如圖,在等腰直角三角形中, =900 ="6," 分別是,上的點(diǎn),  的中點(diǎn).將沿折起,得到如圖所示的四棱椎,其中

(1)證明:;
(2)求二面角的平面角的余弦值.
(1)詳見解析  (2)

試題分析:(1)F為ED的中點(diǎn),連接OF,A’F,根據(jù)已知計(jì)算出的長(zhǎng)度,滿足勾股定理,, A’F為等腰△A’DE底邊的中線,, ,證得線面垂直,線線垂直,再線面垂直;(2)過(guò)點(diǎn)O作的延長(zhǎng)線于,連接.利用(1)可知:平面,根據(jù)三垂線定理得,所以為二面角的平面角.在直角中,求出即可;
試題解析:
證明: (1)設(shè)F為ED的中點(diǎn),連接OF,A’F,計(jì)算得A’F=2,OF=1

∵A’F為等腰△A’DE底邊的中線,∴A’F⊥DE
∵OF在原等腰△ABC底邊BC的高線上,
∴OF⊥DE
又∵A’F,OF平面A’OF, A’FOF=F,
∴DE⊥平面A’OF
∵A’O平面A’OF, ∴DE⊥A’O
在△A’FO中,A’+=3+1=,∴A’O⊥OF
∵OFDE=F,OF平面BCDE,DE平面BCDE, ∴A’O⊥平面BCDE          6分
(2):如答圖1,過(guò)O作CD的垂線交CD的延長(zhǎng)線于M,連接A’M
∵A’O⊥平面BCDE,CD平面BCDE, ∴CD⊥A’O ∵OMA’O="O," ∴CD⊥平面A’OM
∵A’M平面A’OM∴CD⊥A’M ∴∠A’MO為所求二面角的平面角
在Rt△OMC中,OM==, A’O=于是在Rt△A’OM中,A’M=∠A’OM=    13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四棱錐P-ABCD中,AB∥DC,AB⊥平面PAD, PD=AD,AB=2DC,E是PB的中點(diǎn).

求證:(1)CE∥平面PAD;
(2)平面PBC⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知mn為兩條不同的直線,、為兩個(gè)不同的平面,下列命題中正確的是(     )
A.若,m,則m
B.若m,m,則
C.若,m,則m
D.若m,mn,則n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是不重合的直線,是不重合的平面,有下列命題:
①若,,則;
②若,,則;
③若,,則;
④若,則
其中真命題的個(gè)數(shù)是(   )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方體中,與平面所成的角的大小是
A.90°B.30°C.45°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知不重合的直線m、l和平面,且.給出下列命題:
①若,則;
②若,則
③若,則;
④若,則,
其中正確命題的個(gè)數(shù)是(   )
A.1B.2C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中,mn表示兩條不同的直線,α、β、γ表示三個(gè)不同的平面.
①若mα,nα,則mn
②若αγ,βγ,則αβ
③若mα,nα,則mn
④若αβ,βγ,mα,則mγ.
則正確的命題是 (     ) 
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線l,m和平面,下列命題正確的是(   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若m,n為兩條不重合的直線,α,β為兩個(gè)不重合的平面,則下列命題是真命題的是________.(填序號(hào))
①若m、n都平行于平面α,則m、n一定不是相交直線;
②若m、n都垂直于平面α,則m、n一定是平行直線;
③已知α、β互相平行,m、n互相平行,若m∥α,則n∥β;
④若m、n在平面α內(nèi)的射影互相平行,則m、n互相平行.

查看答案和解析>>

同步練習(xí)冊(cè)答案