橢圓上一點M到焦點的距離為2,的中點,則等于(   )
A.2B.C.D.
B

試題分析:由橢圓的定義可得=10-2=8,因為的中點,所以O(shè)N是三角形的中位線,故的一半4,選B。
點評:簡單題,利用橢圓的定義可得,由三角形中位線定理的一半。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)橢圓的左、右焦點分別為,焦距為2,,過作垂直于橢圓長軸的弦長為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過的直線l交橢圓于兩點.并判斷是否存在直線l使得的夾角為鈍角,若存在,求出l的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和拋物線y2 ="-8x" 的準(zhǔn)線所圍成的三角形(含邊界與內(nèi)部).若點(x,y) ∈ D,則x+ y的最小值為
A.-1B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中,,給出滿足的條件,就能得到動點的軌跡方程,下表給出了一些條件及方程:
條件
方程
① 周長為10

② 面積為10

③ 中,

則滿足條件①、②、③的軌跡方程分別為________(用代號、填入) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點的直線與拋物線交于A、B兩點,拋物線準(zhǔn)線與x軸交于C點,若,則|AF|-|BF|的值為(      )
A.                 B.                 C.               D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心在原點,焦點在x軸上,焦距等于6,離心率等于,則此橢圓的方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線的離心率為e=,右焦點為F(c,0),方程ax2-bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2
A.在圓x2+y2=8外B.在圓x2+y2=8上
C.在圓x2+y2=8內(nèi) D.不在圓x2+y2=8內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線  的右焦點為,右準(zhǔn)線  與兩條漸近線交于兩點,如果是等邊三角形,則雙曲線的離心率的值為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案