若方程表示圓,則的取值范圍是(  )
A.B.C.D.
C

試題分析:根據(jù)圓的一般式方程x2+y2 +dx+ey+f=0( d2+e2-4f>0),列出不等式16+4-20k>0,求k的取值范圍.解:關(guān)于x,y的方程表示圓時(shí),應(yīng)有16+4-20k>0,解得 k<1,故答案為:C
點(diǎn)評(píng):本題考查二元二次方程表示圓的條件,x2+y2 +dx+ey+f=0表示圓的充要條件是:d2+e2-4f>0
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求與x軸相切,圓心C在直線3x-y=0上,且截直線x-y=0得的弦長(zhǎng)為2的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線始終平分圓的周長(zhǎng),則的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果圓x2+y2+Dx+Ey+F=0與x軸切于原點(diǎn), 那么(  )          
A.D=0,E≠0, F≠0B.E=F=0,D≠0C.D="F=0," E≠0D.D=E=0,F≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是⊙的直徑,是⊙的切線,為切點(diǎn),的延長(zhǎng)線交于點(diǎn).若,則的長(zhǎng)為        .
     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知⊙和點(diǎn).

(Ⅰ)過點(diǎn)向⊙引切線,求直線的方程;
(Ⅱ)求以點(diǎn)為圓心,且被直線截得的弦長(zhǎng)為4的⊙的方程;
(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點(diǎn),過點(diǎn)向⊙引切線,切點(diǎn)為. 試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請(qǐng)舉出一例,并指出相應(yīng)的定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知圓和直線,直線,都經(jīng)過圓C外定點(diǎn)A(1,0).
(Ⅰ)若直線與圓C相切,求直線的方程;
(Ⅱ)若直線與圓C相交于P,Q兩點(diǎn),與交于N點(diǎn),且線段PQ的中點(diǎn)為M,
求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)可作圓的兩條切線,則實(shí)數(shù)的取值范圍為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓方程為
(1)求圓心軌跡的參數(shù)方程C;
(2)點(diǎn)是(1)中曲線C上的動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案