【題目】2011年,國(guó)際數(shù)學(xué)協(xié)會(huì)正式宣布,將每年的3月14日設(shè)為國(guó)際數(shù)學(xué)節(jié),來源則是中國(guó)古代數(shù)學(xué)家祖沖之的圓周率.祖沖之,在世界數(shù)學(xué)史上第一次將圓周率(π)值計(jì)算到小數(shù)點(diǎn)后的第7位,即3.1415926到3.1415927之間,數(shù)列{an}是公差大于0的等差數(shù)列,其前三項(xiàng)是“31415926”中連續(xù)的三個(gè)數(shù),數(shù)列{bn}是等比數(shù)列,其公比大于1的正整數(shù)且前三項(xiàng)是“31415926”中的三個(gè)數(shù),且a3=b3 .
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)cn= ,求c1+c2+c3+…+c .(n∈N*)
【答案】解:(Ⅰ)由題可知a1=1,a2=5,a3=9,
b1=4,b2=6,b3=9,
所以an=1+4(n﹣1)=4n﹣3,bn=4× ;
(Ⅱ)由(I)可知cn= ,
則c1+c3+…+ =1﹣ + ﹣ +…+ ﹣ =1﹣ ,
c2+c4+…+ =(2+4+…+2n)﹣[(2﹣2)+(4﹣2)+(6﹣2)+…+(2n﹣2)]log32
= ﹣[ ﹣2n]log32
=2n﹣1+22n﹣2﹣(22n﹣2﹣2n﹣1)log32,
故所求值為1﹣ +2n﹣1+22n﹣2﹣(22n﹣2﹣2n﹣1)log32
【解析】(Ⅰ)通過題干確定數(shù)列{an}、{bn}的前三項(xiàng),進(jìn)而可得結(jié)論;(Ⅱ)通過(I)可求出cn的表達(dá)式,利用裂項(xiàng)相消法可知奇數(shù)項(xiàng)的和,利用分組求和法可求出偶數(shù)項(xiàng)的和,進(jìn)而相加即得結(jié)論.
【考點(diǎn)精析】掌握數(shù)列的前n項(xiàng)和是解答本題的根本,需要知道數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分別是PB,PC的中點(diǎn).
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)求三棱錐E—ABC的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩支排球隊(duì)進(jìn)行比賽,先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是 ,其余每局比賽甲隊(duì)獲勝的概率都是 .設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)分別求甲隊(duì)3:0,3:1,3:2勝利的概率;
(2)若比賽結(jié)果3:0或3:1,則勝利方得3分,對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分,對(duì)方得1分,求乙隊(duì)得分X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=blnx+a(a>0,b>0)在x=1處的切線與圓(x﹣2)2+y2=4相交于A、B兩點(diǎn),并且弦長(zhǎng)|AB|= 2 ,則 + ﹣ 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽,f(﹣2)=2021,對(duì)任意x∈(﹣∞,+∞),都有f'(x)<2x成立,則不等式f(x)>x2+2017的解集為( )
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))
(1)求曲線C的普通方程;
(2)在以O(shè)為極點(diǎn),x正半軸為極軸的極坐標(biāo)系中,直線l方程為 ρsin( ﹣θ)+1=0,已知直線l與曲線C相交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(I)討論函數(shù)的單調(diào)性,并證明當(dāng)x>﹣2時(shí),xex+2+x+4>0;
(Ⅱ)證明:當(dāng)a∈[0,1)時(shí),函數(shù)g(x)= (x>﹣2)有最小值,設(shè)g(x)最小值為h(a),求函數(shù)h(a)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點(diǎn)M,若點(diǎn)M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是( )
A.(1, )
B.( ,+∞)
C.( ,2)
D.(2,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com