【題目】已知拋物線,直線過拋物線焦點(diǎn),且與拋物線交于, 兩點(diǎn),以線段為直徑的圓與拋物線準(zhǔn)線的位置關(guān)系是( )
A. 相離 B. 相交 C. 相切 D. 不確定
【答案】C
【解析】取AB的中點(diǎn)M,分別過A,B,M作準(zhǔn)線的垂線AP,BQ,MN,垂足分別為P,Q,N,如圖所示,由拋物線的定義可知, ,在直角梯形APQB中, ,故圓心M到準(zhǔn)線的距離等于半徑,所以以AB為直徑的圓與拋物線的準(zhǔn)線相切,故選C.
點(diǎn)睛:本題考查直線與圓的位置關(guān)系以及拋物線的定義的應(yīng)用,屬于中檔題. 以線段為直徑的圓的圓心為AB中點(diǎn)M,圓心到拋物線準(zhǔn)線的距離為MN,由圖可知MN為梯形APQB的中位線,即,再根據(jù)橢圓的定義可得,圓心M到準(zhǔn)線的距離等于半徑,故直線與圓相切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),
在此幾何體中,給出下面四個結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,底面為正三角形, 底面,且, 是的中點(diǎn).
(1)求證: 平面;
(2)求證:平面平面;
(3)在側(cè)棱上是否存在一點(diǎn),使得三棱錐的體積是?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線上,且與另一條直線相切于點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知,點(diǎn)在圓上運(yùn)動,求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點(diǎn).
(I)求證: .
(II)若, 分別是, 的中點(diǎn),求證: 平面.
(III)若二面角的大小為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x),f(0)=-2,且對,yR,都有f(x+y)-f(y)=(x+2y+1)x.
(1)求f(x)的表達(dá)式;
(2)已知關(guān)于x的不等式f(x)-ax+a+1的解集為A,若A[2,3],求實數(shù)a的取值范圍;
(3)已知數(shù)列{}中, , ,記,且數(shù)列{的前n項和為,
求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C:(x-2)2+(y-3)2=1交于M,N兩點(diǎn).
(1)求k的取值范圍;
(2)若=12,其中O為坐標(biāo)原點(diǎn),求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙H被直線x-y-1=0,x+y-3=0分成面積相等的四個部分,且截x軸所得線段的長為2。
(I)求⊙H的方程;
(Ⅱ)若存在過點(diǎn)P(0,b)的直線與⊙H相交于M,N兩點(diǎn),且點(diǎn)M恰好是線段PN的中點(diǎn),求實數(shù)b的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 是拋物線上兩點(diǎn),且與兩點(diǎn)橫坐標(biāo)之和為3.
(1)求直線的斜率;
(2)若直線,直線與拋物線相切于點(diǎn),且,求方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com