選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為
x=2cosα
y=2+2sinα
(其中α為參數(shù)),M是曲線C1上的動點,且M 是線段OP 的中點,(其中O點為坐標(biāo)原點),P 點的軌跡為曲線C2,直線l 的方程為ρsin(θ+
π
4
)=
2
,直線l 與曲線C2交于A,B兩點.
(1)求曲線C2的普通方程;
(2)求線段AB的長.
分析:(1)把曲線C1的參數(shù)方乘化為普通方程,設(shè)點P的坐標(biāo)為(x,y),由M 是線段OP 的中點,可得點M的坐標(biāo),再把點M的坐標(biāo)代入C1的普通方程化簡可得所求.
(2)求得直線l的直角坐標(biāo)方程,求出圓心(0,4)到直線的距離d,利用弦長公式求出線段AB 的值.
解答:解:(1)由曲線C1的參數(shù)方程為
x=2cosα
y=2+2sinα
(其中α為參數(shù)),消去參數(shù)化為普通方程為 x2+(y-2)2=4.
設(shè)點P的坐標(biāo)為(x,y),由M 是線段OP 的中點,可得點M的坐標(biāo)為(
x
2
y
2
).
再由M是曲線C1上的動點可得 (
x
2
)
2
+(
y
2
-2)
2
=4,即 x2+(y-4)2=16.故曲線C2的普通方程為  x2+(y-4)2=16.
(2)直線l 的方程為ρsin(θ+
π
4
)=
2
,即 ρcosθ+ρsinθ=2,即 x+y-2=0.
由于圓心(0,4)到直線的距離等于d=
|0+4-2|
2
=
2
,圓的半徑等于4,
∴線段AB=2
r2-2 
=2
14
點評:本題主要考查把參數(shù)方程化為普通方程的方法,把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點到直線的距離公式、弦長公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標(biāo)系xoy 的O點為極點,Ox為極軸,且長度單位相同,建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
π
4
).直線l與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC
交于點D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在以O(shè)為極點的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點.A,B,C,求線段AB的長.
D.選修4-5:不等式選講
對于實數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xoy中以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1與C2交點的極坐標(biāo);
(Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
x=t3+a
y=
b
2
t3+1
(t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:
坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
在以0為原點,x軸正半軸為極軸的極坐標(biāo)中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點為A,ι與C2除極點外的一個交點為B.當(dāng)α=0時,|AB|=4.
(1)求C1,C2的直角坐標(biāo)方程;
(2)若過點P(1,0)且斜率為
3
的直線m與曲線C1交于D、E兩點,求|PD|與|PE|差的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•晉中三模)選修4-4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系xoy中,曲線c1的參數(shù)方程為:
x=2cosθ
y=2sinθ
(θ為參數(shù)),把曲線c1上所有點的縱坐標(biāo)壓縮為原來的一半得到曲線c2,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
2
ρcos(θ-
π
4
)=4

(1)求曲線c2的普通方程,并指明曲線類型;
(2)過(1,0)點與l垂直的直線l1與曲線c2相交與A、B兩點,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案