如圖,四邊形ABCD為正方形,PA平面ABCD,且AD= 2PA,E、F、G、H分別是線段PA、PD、CD、BC的中點.

(I)求證:BC∥平面EFG;
(II)求證:DH平面AEG.

(Ⅰ)見解析;(Ⅱ)見解析.

解析試題分析:(Ⅰ)根據(jù)分別為中點,得到,
根據(jù),推出即得證.
(Ⅱ)由⊥平面,得到,即
再利用△≌△,可推出∠=∠,∠+∠=90°,得到∠+∠=90°,證得后即得證.
試題解析:(Ⅰ)因為分別為中點,所以,
因為,所以,     2分
因為平面平面, 4分
所以∥平面.   6分

(Ⅱ)因為⊥平面,所以
,        8分
因為△≌△,
所以∠=∠,
+∠=90°,
所以∠+∠=90°,
所以 ,
又因為=,所以⊥平面 .       12分
考點:立體幾何的平行關系、垂直關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱中,四邊形為菱形,,四邊形為矩形,若,,.

(1)求證:;
(2)求二面角的余弦值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,平面,是正三角形,的交點恰好是中點,又,點在線段上,且

(1)求證:;
(2)求證:平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC—A1B1C1中, ,直線B1C與平面ABC成45°角。

(1)求證:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,已知是棱的中點.

求證:(1)平面,
(2)直線∥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,側棱AA1⊥面ABC,D、E分別是棱A1B1、AA1的中點,點F在棱AB上,且

(I)求證:EF∥平面BDC1;
(II)求二面角E-BC1-D的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知在側棱垂直于底面的三棱柱中,,且,點中點.

(1)求證:平面⊥平面
(2)若直線與平面所成角的正弦值為,
求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐P-ABCD的底面為直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.

(I) 試判斷直線CD與平面PAD是否垂直,并簡述理由;
(II)求證:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(Ⅰ)證明:AD⊥C1E;
(Ⅱ)當異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積.

查看答案和解析>>

同步練習冊答案