【題目】己知函數(shù)f(x)=loga(3x+1),g(x)=loga(1﹣3x),(a>0且a≠1).
(1)求函數(shù)F(x)=f(x)﹣g(x)的定義域;
(2)判斷F(x)=f(x)﹣g(x)的奇偶性,并說(shuō)明理由4;
(3)確定x為何值時(shí),有f(x)﹣g(x)>0.

【答案】
(1)

解:F(x)=f(x)﹣g(x)=loga(3x+1)﹣loga(1﹣3x),

,解得

∴F(x)=f(x)﹣g(x)的定義域是(﹣


(2)

解:由(1)知F(x)定義域關(guān)于原點(diǎn)對(duì)稱,

∵F(x)=loga(3x+1)﹣loga(1﹣3x),

F(﹣x)=loga(﹣3x+1)﹣loga(1+3x)=﹣F(x).

∴F(x)=f(x)﹣g(x)是奇函數(shù)


(3)

解:∵f(x)﹣g(x)>0,

∴f(x)>g(x),

即 loga(3x+1)>loga(1﹣3x),

① 當(dāng)a>1時(shí), ,解得 0<x<

②當(dāng)0<a<1時(shí), ,解得﹣

綜上所述:當(dāng)a>1時(shí),f(x)﹣g(x)>0的解是0<x<

當(dāng)0<a<1時(shí),f(x)﹣g(x)>0的解是﹣


【解析】(1)由真數(shù)大于零即可列出方程組 ,解出即可;(2)由F(﹣x)=loga(﹣3x+1)﹣loga(1+3x)=﹣F(x),再結(jié)合定義域即能得出答案.(3)不等式f(x)﹣g(x)>0轉(zhuǎn)化為loga(3x+1)>loga(1﹣3x),然后分當(dāng)a>1時(shí)和0<a<1兩種情況進(jìn)行討論,利用對(duì)數(shù)函數(shù)的單調(diào)性列出方程組即得答案.
【考點(diǎn)精析】掌握對(duì)數(shù)函數(shù)的定義域是解答本題的根本,需要知道對(duì)數(shù)函數(shù)的定義域范圍:(0,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)舉行節(jié)日促銷活動(dòng),消費(fèi)滿一定數(shù)額即可獲得一次抽獎(jiǎng)機(jī)會(huì),抽獎(jiǎng)這可以從以下兩種方式中任選一種進(jìn)行抽獎(jiǎng).

抽獎(jiǎng)方式①:讓抽獎(jiǎng)?wù)唠S意轉(zhuǎn)動(dòng)如圖所示的圓盤,圓盤停止后指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為,邊界忽略不計(jì))即中獎(jiǎng).

抽獎(jiǎng)方式②:讓抽獎(jiǎng)?wù)邚难b有3個(gè)白球和3個(gè)紅球的盒子中一次性摸出2個(gè)球(球除顏色外不加區(qū)分),如果摸到的是2個(gè)紅球,即中獎(jiǎng).

假如你是抽獎(jiǎng)?wù)撸瑸榱俗屩歇?jiǎng)的可能性大,你應(yīng)該選擇哪一種抽獎(jiǎng)方式?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題:(1)函數(shù)f(x)在[0,+∞)上是增函數(shù),在(﹣∞,0)上也是增函數(shù),所以f(x)在R上是增函數(shù);(2)若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2﹣8a<0,且a>0; (3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞);(4)函數(shù)y=lg10x和函數(shù)y=elnx表示相同函數(shù).其中正確命題的個(gè)數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a為實(shí)數(shù),記函數(shù)f(x)=a + + 的最大值為g(a).
(1)設(shè)t= + ,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t);
(2)求g(a);
(3)試求滿足g(a)=g( )的所有實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四種說(shuō)法: ①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y= + 與y= 都是奇函數(shù);
④函數(shù)y=(x﹣1)2與y=2x1在區(qū)間[0,+∞)上都是增函數(shù).
其中正確的序號(hào)是(把你認(rèn)為正確敘述的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)已知正數(shù)x,y滿足x+2y=1,求 1 x + 1 y 的最小值
(2)已知x>1,求:y=x+最小值,并求相應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�