在長方體ABCD-A1B1C1D1中,棱AB=6,BC=BB1=
2
,點(diǎn)P是線段BC1上的一動點(diǎn),則AP+PB1的最小值是( 。
A、2+
2
B、不等的實(shí)數(shù)根.結(jié)合圖形可知:k∈(0,
4
27
)
C、4
2
D、5
2
分析:如圖,將△BB1C1沿BC1為軸旋轉(zhuǎn)至與平面ABC1共面,得△BB1C1,可得出∠ABB1=135°,由余弦定理求出此時的AB1的長度,再比較四個選項(xiàng),選出正確答案
解答:精英家教網(wǎng)解:如圖,將△BB1C1沿BC1為軸旋轉(zhuǎn)至與平面ABC1共面,
得△BB1C1,
則∠ABB1=135°,故 AP+PB1=AP+PB1≥AB1=
62+(
2
)2-2×6×
2
cos135°
=5
2

等號當(dāng)且僅當(dāng)P為AB2與BC1的交點(diǎn)時取得.
故選D.
點(diǎn)評:本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,求解本題的關(guān)鍵是借助圖形的翻折,將求折線長度的問題轉(zhuǎn)化為平面上線段長度的問題求解,熟練掌握棱柱的幾何特征及余弦定理也求解這個題的知識上的保證.本題易因?yàn)闆]有想起轉(zhuǎn)化方向而導(dǎo)致解題失敗
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A′B′C′D′中,用截面截下一個棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(理)在長方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點(diǎn)D'到平面B'AC的距離;
(2)二面角B-AC-B'的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在長方體ABCD-A′B′C′D′中,點(diǎn)E為棱CC′上任意一點(diǎn),AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點(diǎn)P為棱C′D′的中點(diǎn),點(diǎn)E為棱CC′的中點(diǎn),求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案