【題目】已知橢圓,是長軸的一個端點(diǎn),弦過橢圓的中心,點(diǎn)在第一象限,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、為橢圓上不重合的兩點(diǎn)且異于、,若的平分線總是垂直于軸,問是否存在實(shí)數(shù),使得?若不存在,請說明理由;若存在,求取得最大值時的的長.
【答案】(1) (2)
【解析】
(1)根據(jù)所給向量間的關(guān)系求出點(diǎn)的坐標(biāo),又由得出半長軸,再將點(diǎn)的坐標(biāo)代入橢圓方程解出,則可得橢圓方程;(2)由題意可得,設(shè),則,將的直線方程與橢圓聯(lián)立解得的坐標(biāo),進(jìn)而得到的坐標(biāo),從而由斜率公式求得,證得,可得存在實(shí)數(shù)符合題意,先利用基本不等式求得,再求出的最大值.
(1)∵,∴,
∵.即,
∴是等腰直角三角形,
∵,∴,
而點(diǎn)在橢圓上,∴,,∴,
∴所求橢圓方程為.
(2)對于橢圓上兩點(diǎn),,
∵的平分線總是垂直于軸,
∴與所在直線關(guān)于對稱,
,則,
∵,∴的直線方程為,①
的直線方程為,②
將①代入,得,③
∵在橢圓上,∴是方程③的一個根,
∴,
以替換,得到.
∴,
∵,,,弦過橢圓的中心,
∴,,∴,
∴,∴,
∴存在實(shí)數(shù),使得,
,
當(dāng)時,即時取等號,
,
又, ,
∴取得最大值時的的長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)棱垂直于底面,,,,為中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積;
(Ⅲ)設(shè)平面與直線交于點(diǎn),求線段的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個分點(diǎn).
(1)從這5個點(diǎn)中任取3個點(diǎn),求這3個點(diǎn)組成直角三角形的概率;
(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,且, , , .
求(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖,將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷.若抽取100人中有女性55人,其中女體育迷有10人,完成答題卡中的列聯(lián)表并判斷能否在犯錯誤概率不超過0.05的前提下認(rèn)為體育迷與性別有關(guān)系?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
附表及公式:,.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(a,bR)的導(dǎo)函數(shù)為,已知,是的兩個不同的零點(diǎn).
(1)證明:;
(2)當(dāng)b=0時,若對任意x>0,不等式恒成立,求a的取值范圍;
(3)求關(guān)于x的方程的實(shí)根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“數(shù)學(xué)發(fā)展史”知識測驗(yàn)后,甲、乙、丙三人對成績進(jìn)行預(yù)測:
甲說:我的成績比乙高;
乙說:丙的成績比我和甲的都高;
丙說:我的成績比乙高.
成績公布后,三人成績互不相同且只有一個人預(yù)測正確,那么三人中預(yù)測正確的是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com