【題目】已知橢圓C: =1(a>b>0)的離心率為 ,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點(diǎn),是否存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過原點(diǎn),若存在,請求出k的值:若不存在,請說明理由.

【答案】
(1)解:由題意得: 解得

所以橢圓的標(biāo)準(zhǔn)方程為


(2)解:假設(shè)存在這樣的實(shí)數(shù)k,使其滿足題意,設(shè)P(x1,y1),Q(x2,y2

聯(lián)立方程組 ,

消去y得:(1+4k2)x2+8kx﹣12=0,

由題意得:x1、x2是此方程的解

所以

因?yàn)镻Q為直徑的圓過原點(diǎn),

所以 ,即

解得 ,所以假設(shè)不成立,

所以,不存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過原點(diǎn)


【解析】(1)利用已知條件列出列出求解橢圓的幾何量求解橢圓的標(biāo)準(zhǔn)方程.(2)假設(shè)存在這樣的實(shí)數(shù)k,使其滿足題意,設(shè)P(x1 , y1),Q(x2 , y2),聯(lián)立方程組 ,利用韋達(dá)定理,以及 ,轉(zhuǎn)化求解即可.
【考點(diǎn)精析】通過靈活運(yùn)用橢圓的標(biāo)準(zhǔn)方程,掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列條件,分別求直線方程:
(1)經(jīng)過點(diǎn)A(3,0)且與直線2x+y﹣5=0垂直;
(2)求經(jīng)過直線x﹣y﹣1=0與2x+y﹣2=0的交點(diǎn),且平行于直線x+2y﹣3=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
附:K2=
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD= ,三棱錐P﹣ABD的體積V= ,求二面角D﹣AE﹣C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a=c>0,f(1)=1,對任意x∈|[﹣2,2],f(x)的最大值與最小值之和為g(a),求g(a)的表達(dá)式;
(2)若a,b,c為正整數(shù),函數(shù)f(x)在(﹣ , )上有兩個不同零點(diǎn),求a+b+c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos(ωx+φ)(ω>0),x=﹣ 是y=f(x)的零點(diǎn),直線x= 為y=f(x)圖象的一條對稱軸,且函數(shù)f(x)在區(qū)間( , )上單調(diào),則ω的最大值是(
A.9
B.7
C.5
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B,C是橢圓C: (a>b>0)上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2,0),BC過橢圓的中心,且·=0,||=2||

(1)求橢圓C的方程;

(2)過點(diǎn)(0,t)的直線l(斜率存在)與橢圓C交于P,Q兩點(diǎn),設(shè)D為橢圓C與y軸負(fù)半軸的交點(diǎn),且||=||,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對年銷售量(單位: )和年利潤(單位:千元)的影響.對近8年的年宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

表中.

(1)根據(jù)散點(diǎn)圖判斷哪一個適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸類型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知這種產(chǎn)品的利潤的的關(guān)系為.根據(jù)(2)的結(jié)果回答下列問題:

(。┠晷麄髻M(fèi)時,年銷售量及年利潤的預(yù)報值是多少?

(ⅱ)年宣傳費(fèi)為何值時,年利潤的預(yù)報值最大?

附:對于一組數(shù)據(jù),其回歸直線的的斜率和截距的最小二乘估計(jì)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說法正確的是(
A.f(x)的圖象關(guān)于直線x=﹣ 對稱
B.函數(shù)f(x)在[﹣ ,0]上單調(diào)遞增
C.f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對稱
D.將函數(shù)y=2sin(2x﹣ )的圖象向左平移 個單位得到f(x)的圖象

查看答案和解析>>

同步練習(xí)冊答案