已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)的最小值為-1.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是減函數(shù),求實(shí)數(shù)λ的取值范圍;
(3)設(shè)函數(shù)h(x)=log2[p-f(x)],若此函數(shù)在定義域范圍內(nèi)不存在零點(diǎn),求實(shí)數(shù)p的取值范圍.
分析:(1)由已知中二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)的最小值為-1.我們易根據(jù)出關(guān)于系數(shù)a,b,c的方程組,解方程組求出a,b,c值后,即可得到函數(shù)f(x)的解析式;
(2)由(1)的結(jié)論及g(x)=f(-x)-λf(x)+1,我們可以得到g(x)的表達(dá)式,由于其解析式為類二次函數(shù)的形式,故要對二次項(xiàng)系數(shù)進(jìn)行分類討論,最后綜合討論結(jié)果即可得到實(shí)數(shù)λ的取值范圍;
(3)由函數(shù)h(x)=log2[p-f(x)]在定義域內(nèi)不存在零點(diǎn),則根據(jù)真數(shù)必須大于0,1的對數(shù)等于0的法則,我們可以構(gòu)造出一個(gè)關(guān)于p的不等式組,解不等式組,即可得到答案.
解答:解:(1)設(shè)f(x)=ax(x+2),又a>0,f(-1)=-1,
∴a=1,
∴f(x)=x
2+2x.(4分)
(2)∵g(x)=f(-x)-λf(x)+1,
∴g(x)=(1-λ)x
2-2(1+λ)x+1,
①當(dāng)λ=1時(shí),g(x)=-4x=1在[-1,1]上是減函數(shù),滿足要求;
②當(dāng)λ≠1時(shí),對稱軸方程為:x=
.
。┊(dāng)λ<1時(shí),1-λ>0,所以
≥1,解得0≤λ<1;
ⅱ)當(dāng)λ>1時(shí),1-λ<0,所以
≤-1,解得λ>1.
綜上,λ≥0.(7分)
(3)函數(shù)h(x)=log
2[p-f(x)]在定義域內(nèi)不存在零點(diǎn),必須且只須有
p-f(x)>0有解,且p-f(x)=1無解.
即[p-f(x)]max>0,且1不在[p-f(x)]的值域內(nèi).
f(x)的最小值為-1,
∴函數(shù)y=p-f(x)的值域?yàn)椋?∞,p+1].
∴
,解得-1<p<0.
∴p的取值范圍為(-1,0).(10分)
點(diǎn)評:本題考查的知識點(diǎn)是二次函數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性與特殊點(diǎn),其中根據(jù)已知條件確定出函數(shù)f(x)的解析式是解答本題的切入點(diǎn)和關(guān)鍵.