(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍.
分析:(1)利用橢圓和其“準圓”的標準方程及其定義即可得出;
(2)先求出點P的坐標,設(shè)出與橢圓相切的直線的方程,并與橢圓的方程聯(lián)立,利用△=0即可求出切線的斜率,進而可 求出直線l1,l2的方程;
(3)先設(shè)出點B、D的坐標并求出點A的坐標,利用向量的數(shù)量積得出
AD
AB
,再利用點B在橢圓上即可得出其取值范圍.
解答:解:(1)由題意可得:a=
3
,c=
2
,b=1,∴r=
(
3
)2+12
=2.
∴橢圓C的方程為
x2
3
+y2=1
,其“準圓”的方程為x2+y2=4;
(2)由“準圓”的方程為x2+y2=4,令y=0,解得x=±2,取P(2,0),
設(shè)過點P且與橢圓相切的直線l的方程為my=x-2,
聯(lián)立
my=x-2
x2
3
+y2=1
,消去x得到關(guān)于y的一元二次方程(3+m2)x2+4m+1=0,
∴△=16m2-4(3+m2)=0,解得m=±1,
故直線l1、l2的方程分別為:y=x-2,y=-x+2.
(3)由“準圓”的方程為x2+y2=4,令y=0,解得x=±2,取點A(2,0).
設(shè)點B(x0,y0),則D(x0,-y0).
AB
AD
=(x0-2,y0)•(x0-2,-y0)=(x0-2)2-y02,
∵點B在橢圓
x2
3
+y2=1
上,∴
x02
3
+y02=1
,∴y02=1-
x02
3
,
AD
AB
=(x0-2)2-1+
x02
3
=
4
3
(x0-
3
2
)2
,
-
3
x0
3
,
0≤
4
3
(x0-
3
2
)2<7+4
3
,
0≤
AD
AB
<7+4
3
,即
AD
AB
的取值范圍為[0,7+4
3
)
點評:熟練掌握圓錐曲線的定義及性質(zhì)、直線與圓錐曲線相切問題的解法、斜率的數(shù)量積的定義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域為R+,且f(1)=3.
(1)若(1,1)是f(x)的一個“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個“P數(shù)對”,且當x∈[1,2)時f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個“類P數(shù)對”,試比較下列各組中兩個式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知集合A={x|0<x<3},B={x|x2≥4},則A∩B=
{x|2≤x<3}
{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知tanα=
1
2
,tan(β-α)=-
1
3
,則tan(β-2α)的值為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)已知命題“若f(x)=m2x2,g(x)=mx2-2m,則集合{x|f(x)<g(x),
12
≤x≤1}=∅
”是假命題,則實數(shù)m的取值范圍是
(-7,0)
(-7,0)

查看答案和解析>>

同步練習(xí)冊答案