精英家教網 > 高中數學 > 題目詳情
已知集合A={n|0<n<10,n∈N},從A中任取3個不同元素分別作為圓方程(x-a)2+(y-b)2=r2中的a,b,r.則使圓心與原點的連線恰好垂直于直線l:x+3y+1=0的概率為______.
A={n|0<n<10,n∈N}={1,2,3,4,5,6,7,8,9}
由題意知本題是一個等可能事件的概率,
試驗發(fā)生包含的事件是A93=504種結果,
滿足條件的事件是使圓心(a,b)與原點的連線垂直于直線l,
b
a
= 3

∴b=3a,
∴當a=1,b=3時半徑有七種取法,
當a=2,b=6時半徑有七種取法,
a=3,b=9時半徑有七種取法,
故事件所包含的基本事件有21個
∴要求的概率是
21
504
=
1
24

故答案為:
1
24
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2008•長寧區(qū)二模)已知集合A={n|0<n<10,n∈N},從A中任取3個不同元素分別作為圓方程(x-a)2+(y-b)2=r2中的a,b,r.則使圓心與原點的連線恰好垂直于直線l:x+3y+1=0的概率為
1
24
1
24

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

已知集合A={n|0<n<10,n∈N},從A中任取3個不同元素分別作為圓方程(x-a)2+(y-b)2=r2中的a,b,r.則使圓心與原點的連線恰好垂直于直線l:x+3y+1=0的概率為________.

查看答案和解析>>

科目:高中數學 來源:2008年上海市長寧區(qū)高考數學二模試卷(理科)(解析版) 題型:解答題

已知集合A={n|0<n<10,n∈N},從A中任取3個不同元素分別作為圓方程(x-a)2+(y-b)2=r2中的a,b,r.則使圓心與原點的連線恰好垂直于直線l:x+3y+1=0的概率為   

查看答案和解析>>

科目:高中數學 來源:2008年上海市長寧區(qū)高考數學二模試卷(文科)(解析版) 題型:解答題

已知集合A={n|0<n<10,n∈N},從A中任取3個不同元素分別作為圓方程(x-a)2+(y-b)2=r2中的a,b,r.則使圓心與原點的連線恰好垂直于直線l:x+3y+1=0的概率為   

查看答案和解析>>

同步練習冊答案