【題目】下列關于棱錐、棱臺的說法,其中不正確的是( )
A.棱臺的側(cè)面一定不會是平行四邊形
B.棱錐的側(cè)面只能是三角形
C.由四個面圍成的封閉圖形只能是三棱錐
D.棱錐被平面截成的兩部分不可能都是棱錐

【答案】D
【解析】

A.棱臺的側(cè)面一定是梯形,而不是平行四邊形,正確故A不符合題意;
B.由棱錐的定義知棱錐的側(cè)面只能是三角形,正確故B不符合題意;
C.由四個面圍成的封閉圖形只能是三棱錐,正確故C不符合題意;
D.如圖所示四棱錐被平面截成的兩部分都是棱錐,錯誤故D符合題意.
所以答案是D.


【考點精析】本題主要考查了棱錐的結(jié)構(gòu)特征和棱臺的結(jié)構(gòu)特征的相關知識點,需要掌握側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方;①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知( +x22n的展開式中各項系數(shù)的和比(3x﹣1)n的展開式中二項式系數(shù)的和大992,求(2x﹣ 2n的展開式中:
(1)第10項
(2)常數(shù)項;
(3)系數(shù)的絕對值最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線C:x2=2py(p>0),其焦點為F,C上的一點M(4,m)滿足|MF|=4.

(1)求拋物線C的標準方程;
(2)過點E(﹣1,0)作不經(jīng)過原點的兩條直線EA,EB分別與拋物線C和圓F:x2+(y﹣2)2=4相切于點A,B,試判斷直線AB是否經(jīng)過焦點F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x2ex1+ax3+bx2 , 已知x=﹣2和x=1為f(x)的極值點.
(1)求a和b的值;
(2)討論f(x)的單調(diào)性;
(3)設g(x)= x3﹣x2 , 試比較f(x)與g(x)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)g(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(1)=0,當x>0時,xg(x)﹣f(x)<0,則使得f(x)<0成立的x的取值范圍是(
A.(﹣∞,﹣1)∪(0,1)
B.(0,1)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(﹣1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率 ,連接橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線l與橢圓相交于不同的兩點A,B,已知點A的坐標為(﹣a,0),點Q(0,y0)在線段AB的垂直平分線上,且 ,求y0的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域[﹣1,5],部分對應值如表,f(x)的導函數(shù)y=f′(x)的圖象如圖所示

x

﹣1

0

2

4

5

F(x)

1

2

1.5

2

1

下列關于函數(shù)f(x)的命題;
①函數(shù)f(x)的值域為[1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù)
③如果當x∈[﹣1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數(shù)y=f(x)﹣a最多有4個零點.
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(n)=1+ + + +…+ ,g(n)= ,n∈N*
(1)當n=1,2,3時,試比較f(n)與g(n)的大小關系;
(2)猜想f(n)與g(n)的大小關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 有兩個極值點x1 , x2 , 且x1<x2 , 記點M(x1 , f(x1)),N(x2 , f(x2)).
(Ⅰ)求直線MN的方程;
(Ⅱ)證明:線段MN與曲線y=f(x)有且只有一個異于M、N的公共點.

查看答案和解析>>

同步練習冊答案