【題目】如圖所示是一個三棱臺ABC-A′B′C′,試用兩個平面把這個三棱臺分成三部分,使每一部分都是一個三棱錐.
【答案】解:過A′,B,C三點作一個平面,再過A′,B,C′作一個平面,就把三棱臺ABC-A′B′C′分成三部分,形成的三個三棱錐分別是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)
【解析】本題要結(jié)合棱錐的結(jié)構特征以及棱臺的特征,兩者之間的聯(lián)系。要抓住“每一部分都是一個三棱錐”進行。
【考點精析】本題主要考查了棱錐的結(jié)構特征和棱臺的結(jié)構特征的相關知識點,需要掌握側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方;①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,兩個正方形ABCD和ADEF所在平面互相垂直,設M、N分別是BD和AE的中點,那么①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE異面.其中假命題的個數(shù)為( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)g(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(1)=0,當x>0時,xg(x)﹣f(x)<0,則使得f(x)<0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(0,1)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(﹣1,0)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且∠BCD=∠BCE= ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)證明:AG∥平面BDE.
(2)求平面BDE和平面ADE所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域[﹣1,5],部分對應值如表,f(x)的導函數(shù)y=f′(x)的圖象如圖所示
x | ﹣1 | 0 | 2 | 4 | 5 |
F(x) | 1 | 2 | 1.5 | 2 | 1 |
下列關于函數(shù)f(x)的命題;
①函數(shù)f(x)的值域為[1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù)
③如果當x∈[﹣1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數(shù)y=f(x)﹣a最多有4個零點.
其中正確命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(Ⅰ)證明:PB∥平面AEC;
(Ⅱ)設二面角D﹣AE﹣C為60°,AP=1,AD= ,求三棱錐E﹣ACD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為 (a為常數(shù),n∈N*).
(1)求a1 , a2 , a3;
(2)若數(shù)列{an}為等比數(shù)列,求常數(shù)a的值及an .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校對高一年級學生的數(shù)學成績進行統(tǒng)計,全年級同學的成績?nèi)拷橛?0分與100分之間,將他們的成績數(shù)據(jù)繪制如圖所示的頻率分布直方圖.現(xiàn)從全體學生中,采用分層抽樣的方法抽取80名同學的試卷進行分析,則從成績在[80,100]內(nèi)的學生中抽取的人數(shù)為( )
A.56
B.32
C.24
D.18
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com