如圖,P為△AOB所在平面上一點(diǎn),向量
OA
=
a
OB
=
b
,且P在線段AB的垂直平分線上,向量
OP
=
c
.若|
a
|=3,|
b
|=2,則
c
•(
a
-
b
)
的值為( 。
分析:直接按照數(shù)量積的定義公式不易求解,
c
與(
a
-
b
)
夾角及模均不確定,建立平面直角坐標(biāo)系,也不易求解,注意到P在線段AB的垂直平分線上,若設(shè)AB中點(diǎn)為D,則
OP
=
OD
+
OP
,
OD
=
1
2
(
OA
+
OB
)
,且
DP
BA
=0
,代換轉(zhuǎn)化為
OA
,
OB
的運(yùn)算.
解答:解:設(shè)AB中點(diǎn)為D,則
OP
=
OD
+
DP
,
OD
=
1
2
(
OA
+
OB
)
,
c
•(
a
-
b
)
=(
OD
+
DP)
BA
=
OD
BA
+
DP
BA
=
1
2
(
OA
+
OB
)
•(
OA
-
OB
)+0 
=
1
2
a
-
2
b
2
)=
1
2
(9-4)=
5
2

故選C
點(diǎn)評(píng):本題考查向量數(shù)量積的運(yùn)算,考查轉(zhuǎn)化計(jì)算能力.向量數(shù)量積
a
b
的計(jì)算常通過下列途徑:①直接按照定義公式,求出兩向量的模及夾角余弦值,代入公式計(jì)算②利用向量數(shù)量積的幾何意義,整體求出|
b
|cosθ
,即
a
b
方向上的投影,再與|
a
|
相乘.③建立平面直角坐標(biāo)系,利用向量坐標(biāo)運(yùn)算求值.④選擇一組基底,將有關(guān)向量用基向量表示,轉(zhuǎn)化為基向量間的運(yùn)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的平面直角坐標(biāo)系中,三角形AOB是腰長為2的等腰直角三角形,動(dòng)點(diǎn)P與點(diǎn)O位于直線AB的兩側(cè),且∠APB=
34
π

(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)過點(diǎn)P作PH⊥OA交OA于H,求△OHP得周長的最大值及此時(shí)P點(diǎn)得坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)二模)如圖所示,扇形AOB,圓心角AOB的大小等于
π3
,半徑為2,在半徑OA上有一動(dòng)點(diǎn)C,過點(diǎn)C作平行于OB的直線交弧AB于點(diǎn)P.
(1)若C是半徑OA的中點(diǎn),求線段PC的大。
(2)設(shè)∠COP=θ,求△POC面積的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)二模)如圖所示,扇形AOB,圓心角AOB的大小等于
π3
,半徑為2,在半徑OA上有一動(dòng)點(diǎn)C,過點(diǎn)C作平行于OB的直線交弧AB于點(diǎn)P.
(1)若C是OA的中點(diǎn),求PC;
(2)設(shè)∠COP=θ,求△POC周長的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,P為△AOB所在平面上一點(diǎn),且P在線段AB的垂直平分線上,若|
OA
|=3,|
OB
|=2,則
OP
?(
OA
-
OB
)的值為
( 。
A、5
B、3
C、
5
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,O、A、B是平面上三點(diǎn),向量=a,=b,在平面AOB上,P為線段AB的垂直平分線上任一點(diǎn),向量=p,|a|=3,|b|=2,則p·(a-b)的值是

A.                    B.5                    C.3                   D.

查看答案和解析>>

同步練習(xí)冊(cè)答案