(本小題滿分14分)在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.(Ⅰ)求拋物線的方程;(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

(Ⅰ);(Ⅱ)存在M

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題11分)已知圓,過原點(diǎn)的直線與圓相交于兩點(diǎn)
(1) 若弦的長(zhǎng)為,求直線的方程;
(2)求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)
設(shè)有半徑為3的圓形村落,、兩人同時(shí)從村落中心出發(fā)。一直向北直行;先向東直行,出村后一段時(shí)間,改變前進(jìn)方向,沿著與村落邊界相切的直線朝所在的方向前進(jìn)。
(1)若在距離中心5的地方改變方向,建立適當(dāng)坐標(biāo)系,
求:改變方向后前進(jìn)路徑所在直線的方程
(2)設(shè)、兩人速度一定,其速度比為,且后來(lái)恰與相遇.問兩人在何處相遇?
(以村落中心為參照,說(shuō)明方位和距離)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

三角形的頂點(diǎn),重心
(1)求三角形的面積;(2)求三角形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C1與圓C2相交于A、B兩點(diǎn),
(1)求公共弦AB所在的直線方程;
(2)求圓心在直線上,且經(jīng)過A、B兩點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線與圓相交于兩點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在實(shí)數(shù),使得弦的垂直平分線過點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
已知為平面直角坐標(biāo)系的原點(diǎn),過點(diǎn)的直線與圓交于兩點(diǎn).
(I)若,求直線的方程;
(Ⅱ)若的面積相等,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(10分)已知圓C與圓相交,所得公共弦平行于已知直線 ,又圓C經(jīng)過點(diǎn)A(-2,3),B(1,4),求圓C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.(5分)直線與曲線有且只有一個(gè)交點(diǎn),則的取值范圍是(   )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案