已知函數(shù)(a ,bR,e為自然對(duì)數(shù)的底數(shù)),.
(I )當(dāng)b=2時(shí),若存在單調(diào)遞增區(qū)間,求a的取值范圍;
(II)當(dāng)a>0 時(shí),設(shè)的圖象C1的圖象C2相交于兩個(gè)不同的點(diǎn)P、Q,過(guò)線段PQ的中點(diǎn)作x軸的垂線交C1于點(diǎn),求證.
(Ⅰ).(Ⅱ)見(jiàn)解析
(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),然后利用條件轉(zhuǎn)化為方程有解問(wèn)題;(Ⅱ)構(gòu)造函數(shù),利用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性。
(Ⅰ)當(dāng)時(shí),若,則
,原命題等價(jià)于在R上有解.…2分
法一:當(dāng)時(shí),顯然成立;
當(dāng)時(shí),
∴ ,即.綜合所述 .…………………5分
法二:等價(jià)于在R上有解,即∴ .………………5分
(Ⅱ)設(shè),不妨設(shè),則,
,
兩式相減得:,……………7分
整理得

,于是,……9分

,則設(shè),則
,
∴ 上單調(diào)遞增,則,于是有,即,且,∴ ,即
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)討論函數(shù)f (x)的極值情況;
(2)設(shè)g (x) =" ln(x" + 1),當(dāng)x1>x2>0時(shí),試比較f (x1 – x2)與g (x1 – x2)及g (x1) –g (x2)三者的大小;并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的最小值為0,其中。
(1)求a的值
(2)若對(duì)任意的,有成立,求實(shí)數(shù)k的最小值
(3)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法正確的是
A.若,則是函數(shù)的極值
B.若是函數(shù)的極值,則處有導(dǎo)數(shù)
C.函數(shù)至多有一個(gè)極大值和一個(gè)極小值
D.定義在上的可導(dǎo)函數(shù),若方程無(wú)實(shí)數(shù)解,則無(wú)極值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(15分)為定義在上的偶函數(shù),當(dāng)時(shí),,(其中為自然對(duì)數(shù)的底數(shù)),
1)令,求在區(qū)間上的最大值
2)若總存在實(shí)數(shù),對(duì)任意,都有成立,求正整數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù).
(1)若的兩個(gè)極值點(diǎn)為,且,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的導(dǎo)函數(shù)是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),則a的值為 (  )
A.1B.C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x)=x2-2x+1則=(   )
A.0B.4C.7D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案