已知,,求的值
【解析】本試題主要考查了三角函數(shù)的二倍角公式的運用。利用同角三角函數(shù)關(guān)系式可知
,所以,再利用二倍角正切公式
得到結(jié)論。
解:(Ⅰ)
科目:高中數(shù)學(xué) 來源: 題型:
5 |
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省高一下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:解答題
已知點A、B、C的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),
α∈(,).
(1)若||=||,求角α的值;
(2)若·=-1,求的值.
【解析】第一問中利用向量的模相等,可以得到角α的值。
第二問中,·=-1,則化簡可知結(jié)論為
解:因為點A、B、C的坐標分別為A(3,0)、B(0,3)、C(cosα,sinα),
α∈(,).||=|| 所以α=.
(2)因為·=-1,即.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(安徽卷解析版) 題型:解答題
如圖,分別是橢圓:+=1()的左、右焦點,是橢圓的頂點,是直線與橢圓的另一個交點,=60°.
(Ⅰ)求橢圓的離心率;
(Ⅱ)已知△的面積為40,求的值.
【解析】 (Ⅰ)由題=60°,則,即橢圓的離心率為。
(Ⅱ)因△的面積為40,設(shè),又面積公式,又直線,
又由(Ⅰ)知,聯(lián)立方程可得,整理得,解得,,所以,解得。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一期中考試文科數(shù)學(xué)試卷A卷(解析版) 題型:解答題
已知△的內(nèi)角所對的邊分別為且.
(1) 若, 求的值;
(2) 若△的面積 求的值.
【解析】本小題主要考查正弦定理、余弦定理、同角三角函數(shù)的基本關(guān)系等基礎(chǔ)知識,考查運算求解能力。第一問中,得到正弦值,再結(jié)合正弦定理可知,,得到(2)中即所以c=5,再利用余弦定理,得到b的值。
解: (1)∵, 且, ∴ . 由正弦定理得, ∴.
(2)∵ ∴. ∴c=5
由余弦定理得,
∴
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com