【題目】新生兒Apgar評分,即阿氏評分是對新生兒出生后總體狀況的一個評估,主要從呼吸、心率、反射、膚色、肌張力這幾個方面評分,滿10分者為正常新生兒,評分7分以下的新生兒考慮患有輕度窒息,評分在4分以下考慮患有重度窒息,大部分新生兒的評分多在7-10分之間,某市級醫(yī)院婦產(chǎn)科對1月份出生的新生兒隨機抽取了16名,以下表格記錄了他們的評分情況.
(1)現(xiàn)從16名新生兒中隨機抽取3名,求至多有1名評分不低于9分的概率;
(2)以這16名新生兒數(shù)據(jù)來估計本年度的總體數(shù)據(jù),若從本市本年度新生兒任選3名,記 表示抽到評分不低于9分的新生兒數(shù),求 的分布列及數(shù)學期望.
科目:高中數(shù)學 來源: 題型:
【題目】某機構(gòu)為了解某市民用電情況,抽查了該市100戶居民月均用電量(單位:,以分組的頻率分布直方圖如圖所示.
(1)求樣本中月均用電量為的用戶數(shù)量;
(2)估計月均用電量的中位數(shù);
(3)在月均用電量為的四組用戶中,用分層抽樣的方法抽取22戶居民,則月均用電量為的用戶中應該抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 是定義在 上的奇函數(shù),且對任意實數(shù) ,恒有 .當 時, .
(1)求證: 是周期函數(shù);
(2)當 時,求 的解析式;
(3)計算 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D1中,M,N分別為棱C1D1,C1C的中點,有以下四個結(jié)論:
①直線AM與CC1是相交直線;②直線AM與BN是平行直線;
③直線BN與MB1是異面直線; ④直線MN與AC所成的角為60°.
其中正確的結(jié)論為___ (注:把你認為正確的結(jié)論序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠對新研發(fā)的一種產(chǎn)品進行試銷,得到如下數(shù)據(jù)表:
(1)根據(jù)上表求出回歸直線方程 ,并預測當單價定為8.3元時的銷量;
(2)如果該工廠每件產(chǎn)品的成本為5.5元,利用所求的回歸方程,要使得利潤最大,單價應該定為多少?
附:線性回歸方程 中斜率和截距最小二乘估計計算公式:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐 中, 底面 ,底面 為直角梯形, , , , 為 的中點,平面 交 于 點.、
(1)求證: ;
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C1的圓心在坐標原點O,且恰好與直線相切.
(Ⅰ)求圓C1的標準方程;
(Ⅱ)設點A為圓上一動點,AN垂直于x軸于點N,若動點Q滿足
(其中m為非零常數(shù)),試求動點Q的軌跡方程;
(Ⅲ)在(Ⅱ)的結(jié)論下,當m=時,得到動點Q的軌跡為曲線C,與l1垂直的直線l與曲線C交于B,D兩點,求△OBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機調(diào)查詢問110名性別不同的高中生是否愛好某項運動,得到如下的列聯(lián)表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由 計算得
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
C.有99%以上的把握認為“愛好該項運動與性別無關(guān)”
D.有99%以上的把握認為“愛好該項運動與性別有關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com