15.函數(shù)y=x2-ln|x|在[-2,2]的圖象大致為(  )
A.B.C.D.

分析 由函數(shù)y=x2-ln|x知x≠0,排除B、C,根據(jù)函數(shù)最值即可得到答案

解答 解:由函數(shù)y=x2-ln|x知x≠0,排除B、C.
當(dāng)x>0時(shí),y=x2-lnx,$y'=2x-\frac{1}{x}=\frac{{2{x^2}-1}}{x}$,知當(dāng)$x=\frac{{\sqrt{2}}}{2}$時(shí),函數(shù)y=x2-lnx取得極小值,
故選A.

點(diǎn)評(píng) 本題考查了函數(shù)圖象的識(shí)別,掌握函數(shù)的定義域以及函數(shù)的最值時(shí)關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若$\frac{cos2θ}{sin(θ+\frac{π}{4})}$=-$\frac{\sqrt{2}}{2}$,則log${\;}_{\sqrt{2}}$(sinθ-cosθ)的值為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.${({\frac{2+2i}{1-i}})^3}$=( 。
A.8B.-8C.8iD.-8i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$z=\frac{2i}{2-i}$(i為虛數(shù)單位)所對(duì)應(yīng)的點(diǎn)位于復(fù)平面內(nèi)( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知α∈[0,2π),直線l1:xcosα-y-1=0,l2:x+ysinα+1=0相互垂直,則α的值為$\frac{π}{4}$或$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)4a=5b=m,且$\frac{1}{a}$+$\frac{2}$=1.
(1)求a,b的值(用m表示);
(2)求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖表示一位騎自行車者與一位騎摩托車者在相距80km的兩城鎮(zhèn)間旅行的函數(shù)圖象,由圖中信息,判斷以下說法正確的序號(hào)為( 。
①騎自行車者比騎摩托車者早出發(fā)3小時(shí),晚到1小時(shí);
②騎自行車者是變速運(yùn)動(dòng),騎摩托車者是勻速運(yùn)動(dòng);
③騎摩托車者出發(fā)后1.5小時(shí)后追上了騎自行車者.
A.①③B.①②C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\frac{1}{3}$ax3+ax2+x+2存在單調(diào)遞減區(qū)間,則a的取值范圍是(-∞,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題P::直線mx-y+2=0與圓x2+y2-2x-4y+$\frac{19}{4}$=0有兩個(gè)交點(diǎn);命題:$q:?{x_0}∈[{-\frac{π}{6},\frac{π}{4}}],2sin({2{x_0}+\frac{π}{6}})+2cos2{x_0}$≤m.
(1)若p∧q為真命題,求實(shí)數(shù)m的取值范圍;
(2)若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案