【題目】設(shè)e為圓錐曲線的離心率,F(xiàn)為一個(gè)焦點(diǎn),l是焦點(diǎn)所在的對(duì)稱(chēng)軸,O是l上距F較近的頂點(diǎn),又M、N是l上滿足的兩點(diǎn)。求證:對(duì)曲線的過(guò)點(diǎn)M的任一條弦AB(A、B為弦的端點(diǎn)),直線l平分NA和NB的一組夾角。

【答案】見(jiàn)解析

【解析】

以O(shè)為原點(diǎn)、OF為x軸正向建立直角坐標(biāo)系.

設(shè)|OF|=s,則曲線的方程為

又因?yàn)镺F°0M+ 0F°ON= (1-e)0M°ON已限定M、N異于點(diǎn)O,且當(dāng)為橢圓或雙曲線時(shí),M、N異于的中心(否則,有OF=(1-e)0M或OF=(1-e)ON,矛盾).故可設(shè),知N.

又設(shè)直線

其中θ的取值只須保證式②與有公共點(diǎn).

將式②代入①并整理,可得.

.

當(dāng)點(diǎn)A、B存在時(shí),設(shè)所對(duì)應(yīng)的參數(shù)分別為,則,

且由韋達(dá)定理知

由式②可知,.

為證直線l平分NA和NB的一組夾角,只須證明直線NA和NB的斜率互為相反數(shù).

這等價(jià)于證明

而此式恰等價(jià)于式③.故結(jié)論成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解使用手機(jī)是否對(duì)學(xué)生的學(xué)習(xí)有影響,某校隨機(jī)抽取100名學(xué)生,對(duì)學(xué)習(xí)成績(jī)和使用手機(jī)情況進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示(不完整):

使用手機(jī)

不使用手機(jī)

總計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

10

40

學(xué)習(xí)成績(jī)一般

30

總計(jì)

100

(Ⅰ)補(bǔ)充完整所給表格,并根據(jù)表格數(shù)據(jù)計(jì)算是否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)成績(jī)與使用手機(jī)有關(guān);

(Ⅱ)現(xiàn)從上表不使用手機(jī)的學(xué)生中按學(xué)習(xí)成績(jī)是否優(yōu)秀分層抽樣選出6人,再?gòu)倪@6人中隨機(jī)抽取3人,記這3人中“學(xué)習(xí)成績(jī)優(yōu)秀”的人數(shù)為,試求的分布列與數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)點(diǎn).若直與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)統(tǒng)計(jì),某校學(xué)生上學(xué)路程所需要時(shí)間全部介于之間(單位:分鐘).現(xiàn)從在校學(xué)生中隨機(jī)抽取人,按上學(xué)所學(xué)時(shí)間分組如下:第,第,第,第,第,得打如圖所示的頻率分布直方圖.

Ⅰ)根據(jù)圖中數(shù)據(jù)求的值.

Ⅱ)若從第,組中用分成抽樣的方法抽取人參與交通安全問(wèn)卷調(diào)查,應(yīng)從這三組中各抽取幾人?

Ⅲ)在(Ⅱ)的條件下,若從這人中隨機(jī)抽取人參加交通安全宣傳活動(dòng),求第組至少有人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果一個(gè)正整數(shù)n在三進(jìn)制下的各位數(shù)字之和能被3整除,則稱(chēng)n為“恰當(dāng)數(shù)”。求S={1,2,...,2005}中全體恰當(dāng)數(shù)之和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,直線l與橢圓C交于AB兩點(diǎn),且

1)求橢圓C的方程;

2)若A、B兩點(diǎn)關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)分別為,且,判斷四邊形是否存在內(nèi)切的定圓?若存在,請(qǐng)求出該內(nèi)切圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)的積函數(shù).

1)求函數(shù)的表達(dá)式,并求其定義域;

2)當(dāng)時(shí),求函數(shù)的值域

3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫(xiě)出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三國(guó)時(shí)代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個(gè)全等的直角三角形及一個(gè)小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(大小忽略不計(jì),取),則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為( )

A. 134 B. 67 C. 200 D. 250

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018831日,十三屆全國(guó)人大常委會(huì)第五次會(huì)議表決通過(guò)了關(guān)于修改個(gè)人所得稅法的決定,這是我國(guó)個(gè)人所得稅法自1980年出臺(tái)以來(lái)第七次大修為了讓納稅人盡早享受減稅紅利,在過(guò)渡期對(duì)納稅個(gè)人按照下表計(jì)算個(gè)人所得稅,值得注意的是起征點(diǎn)變?yōu)?/span>5000元,即如表中“全月應(yīng)納稅所得額”是納稅者的月薪金收入減去5000元后的余額.

級(jí)數(shù)

全月應(yīng)納稅所得額

稅率

1

不超過(guò)3000元的部分

2

超過(guò)3000元至12000元的部分

3

超過(guò)12000元至25000元的部分

某企業(yè)員工今年10月份的月工資為15000元,則應(yīng)繳納的個(gè)人所得稅為______

查看答案和解析>>

同步練習(xí)冊(cè)答案