設集合U=R,A={x|
1
2
<2x<4},B={x|lgx>0},則A∪B=( 。
分析:先根據(jù)函數(shù)的單調(diào)性分別解指數(shù)不等式和對數(shù)不等式,將集合A、B化簡,再根據(jù)集合A∪B是由屬于A或?qū)儆贐的元素構成的集合,可得本題的答案.
解答:解:對于集合A,解不等式
1
2
<2x<4,得-1<x<2,
∴A={x|-1<x<2},
而集合B,lgx>0得x>1,所以B={x|x>1},
∴A∪B={x|x>-1}
故選A
點評:本題給出含有指數(shù)和對數(shù)的不等式構成的集合,求它們的交集,著重考查了指、對數(shù)不等式的解法和并集的運算等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設集合U=R,A={x|
1
2
<2x<4},B={x|lgx>0},則A∩B=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•汕頭一模)設集合U=R,A={x|x2-4<0},B={x|x<0},則A∩?UB═(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上饒一模)設集合U=R,A={x|x=
3k+1
,k∈N+}
,B={x|x≤5,x∈Q}(Q為有理數(shù)集),則圖中陰影部分表示的集合是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上饒一模)設集合U=R,A={x|x=
3k+1
,k∈N+}
,B={x|x≤4,x∈Q}(Q為有理數(shù)集),則圖中陰影部分表示的集合是( 。

查看答案和解析>>

同步練習冊答案