已知等比數(shù)列項和為,且滿足,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求的值.

(1);(2)143.

解析試題分析:本題主要考查等差數(shù)列與等比數(shù)列的概念、通項公式、前n項和公式、數(shù)列求和及對數(shù)式的運算等數(shù)學知識,考查思維能力、分析問題解決問題的能力以及計算能力.第一問,法一:利用等比數(shù)列的前n項和公式,將展開,組成方程組,兩式相除,解出,寫出通項公式;法二:利用等比數(shù)列的通項公式,又因為,,展開,相除,解出,寫出通項公式;第二問,先將第一問的結(jié)論代入,化簡,得到,所以可以證出數(shù)列為等差數(shù)列,所以利用等差數(shù)列的前n項和公式進行求和化簡.
試題解析:(1)法一:,整理得,解得,
,,所以,通項公式為  5分
法二:,得,所以,通項公式為 .    5分
(2)   6分
  12分
考點:1.等比數(shù)列的通項公式;2.等比數(shù)列的前n項和公式;3.對數(shù)式的運算;4.等差數(shù)列的前n項和公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,.
(1)求數(shù)列的通項公式;
(2)設log2an+1 ,求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且Sn=4an-3(n∈N*).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{bn}滿足bn+1=an+bn(n∈N*),且b1=2,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列{an}中,a1=1,{an}的前n項和Sn滿足2Snan+1.
(1)求數(shù)列{an}的通項公式;
(2)若存在n∈N*,使得λ,求實數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列{an}滿足:|a2a3|=10,a1a2a3=125.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m,使得≥1?若存在,求m的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是等比數(shù)列的前項和,、、成等差數(shù)列,且.
(1)求數(shù)列的通項公式;
(2)是否存在正整數(shù),使得?若存在,求出符合條件的所有的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

等比數(shù)列的前項和,已知,,成等差數(shù)列.
(1)求數(shù)列的公比和通項;
(2)若是遞增數(shù)列,令,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,數(shù)列是首項為,公比也為的等比數(shù)列,令
(Ⅰ)若,求數(shù)列的前項和;
(Ⅱ)當數(shù)列中的每一項總小于它后面的項時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列單調(diào)遞增,,,.
(Ⅰ)求;
(Ⅱ)若,求的最小值.

查看答案和解析>>

同步練習冊答案