【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時,恒成立,求的取值范圍.

【答案】(Ⅰ)詳見解析;(Ⅱ)

【解析】

(Ⅰ),對進(jìn)行分類討論分兩種情況,畫出相應(yīng)導(dǎo)函數(shù)的草圖,得出結(jié)論;

(Ⅱ),則,對則求導(dǎo),判斷單調(diào)性得出最大值點進(jìn)行求解

(Ⅰ)由題可得,

當(dāng)時,恒成立,所以函數(shù)上單調(diào)遞增;

當(dāng)時,令;令,得,

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

綜上,當(dāng)時,函數(shù)上單調(diào)遞增;當(dāng)時,函數(shù)上單調(diào)遞減,在上單調(diào)遞增.

(Ⅱ),即

,則

易得,

,則,

所以函數(shù)上單調(diào)遞減,,

①當(dāng)時,,則,所以,

所以函數(shù)上單調(diào)遞減,所以,滿足;

②當(dāng)時,,,,

所以存在,使得,

所以當(dāng)時,;當(dāng)時,,

所以函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

,所以,所以不滿足

綜上可得,故的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面四邊形中,E,F中點,,,將沿對角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是(

A.平面B.異面直線所成的角為90°

C.異面直線所成的角為60°D.直線與平面所成的角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為是參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校為增加應(yīng)屆畢業(yè)生就業(yè)機(jī)會,每年根據(jù)應(yīng)屆畢業(yè)生的綜合素質(zhì)和學(xué)業(yè)成績對學(xué)生進(jìn)行綜合評估,已知某年度參與評估的畢業(yè)生共有2000名.其評估成績近似的服從正態(tài)分布.現(xiàn)隨機(jī)抽取了100名畢業(yè)生的評估成績作為樣本,并把樣本數(shù)據(jù)進(jìn)行了分組,繪制了如下頻率分布直方圖:

1)求樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

2)若學(xué)校規(guī)定評估成績超過82.7分的畢業(yè)生可參加三家公司的面試.

用樣本平均數(shù)作為的估計值,用樣本標(biāo)準(zhǔn)差作為的估計值.請利用估計值判斷這2000名畢業(yè)生中,能夠參加三家公司面試的人數(shù);

附:若隨機(jī)變量,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù),函數(shù)

(1)當(dāng)時,判斷上單調(diào)性,并加以證明;

(2)當(dāng)時,研究的奇偶性,并說明理由;

(3)當(dāng)時,若存在區(qū)間使得上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進(jìn)行分層抽樣檢查,測得身高情況的統(tǒng)計圖如下:

(1)估計該校男生的人數(shù);并求出

(2)估計該校學(xué)生身高在之間的概率;

(3)從樣本中身高在之間的女生中任選2人,求至少有1人身高在之間的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面,四邊形是矩形,,分別是棱,,的中點.

(1)求證:平面;

(2)若,,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)能減排,發(fā)展低碳經(jīng)濟(jì),我國政府從2001年起就通過相關(guān)扶植政策推動新能源汽車產(chǎn)業(yè)發(fā)展.下面的圖表反映了該產(chǎn)業(yè)發(fā)展的相關(guān)信息:

2019年2月份新能源汽車銷量結(jié)構(gòu)圖根據(jù)上述圖表信息,下列結(jié)論錯誤的是( )

A.2018年4月份我國新能源汽車的銷量高于產(chǎn)量

B.2017年3月份我國新能源汽車的產(chǎn)量不超過3.4萬輛

C.2019年2月份我國插電式混合動力汽車的銷量低于1萬輛

D.2017年我國新能源汽車總銷量超過70萬輛

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的離心率,橢圓上的點到左焦點的距離的最大值為3.

(1)求橢圓的方程;

(2)求橢圓的外切矩形的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案