【題目】如圖,四邊形為正方形,分別為的中點,以為折痕把折起,使點到達點的位置,且.
(1)證明:平面平面;
(2)求與平面所成角的正弦值.
【答案】(1)證明見解析.
(2) .
【解析】分析:(1)首先從題的條件中確定相應的垂直關系,即BF⊥PF,BF⊥EF,又因為,利用線面垂直的判定定理可以得出BF⊥平面PEF,又平面ABFD,利用面面垂直的判定定理證得平面PEF⊥平面ABFD.
(2)結合題意,建立相應的空間直角坐標系,正確寫出相應的點的坐標,求得平面ABFD的法向量,設DP與平面ABFD所成角為,利用線面角的定義,可以求得,得到結果.
詳解:(1)由已知可得,BF⊥PF,BF⊥EF,又,所以BF⊥平面PEF.
又平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足為H.由(1)得,PH⊥平面ABFD.
以H為坐標原點,的方向為y軸正方向,為單位長,建立如圖所示的空間直角坐標系Hxyz.
由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=.又PF=1,EF=2,故PE⊥PF.
可得.
則 為平面ABFD的法向量.
設DP與平面ABFD所成角為,則.
所以DP與平面ABFD所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+﹣1,a∈R.
(1)當a>0時,若函數(shù)f(x)在區(qū)間[1,3]上的最小值為,求a的值;
(2)討論函數(shù)g(x)=f′(x)﹣零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在邊長為4的菱形中,,于點,將沿折起到的位置,使,如圖2.
(1)求證:平面;
(2)求二面角的余弦值;
(3)判斷在線段上是否存在一點,使平面平面?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知數(shù)列,首項,設該數(shù)列的前項的和為,且
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的通項公式;
(3)在第(2)小題的條件下,令,是數(shù)列的前項和,若對,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),是常數(shù)且.
(1)若曲線在處的切線經(jīng)過點,求的值;
(2)若(是自然對數(shù)的底數(shù)),試證明:①函數(shù)有兩個零點,②函數(shù)的兩個零點滿足.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在上海高考改革方案中,要求每位高中生必須在物理、化學、生物、政治、歷史、地理6門學科(3門理科,3門文科)中選擇3門學科參加等級考試,小李同學受理想中的大學專業(yè)所限,決定至少選擇一門理科學科,那么小李同學的選科方案有________種.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.
(1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;
(2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;
(3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位為促進職工業(yè)務技能提升,對該單位120名職工進行一次業(yè)務技能測試,測試項目共5項.現(xiàn)從中隨機抽取了10名職工的測試結果,將它們編號后得到它們的統(tǒng)計結果如下表(表1)所示(“√”表示測試合格,“×”表示測試不合格).
表1:
編號\測試項目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
規(guī)定:每項測試合格得5分,不合格得0分.
(1)以抽取的這10名職工合格項的項數(shù)的頻率代替每名職工合格項的項數(shù)的概率.
①設抽取的這10名職工中,每名職工測試合格的項數(shù)為,根據(jù)上面的測試結果統(tǒng)計表,列出的分布列,并估計這120名職工的平均得分;
②假設各名職工的各項測試結果相互獨立,某科室有5名職工,求這5名職工中至少有4人得分不少于20分的概率;
(2)已知在測試中,測試難度的計算公式為,其中為第項測試難度,為第項合格的人數(shù),為參加測試的總?cè)藬?shù).已知抽取的這10名職工每項測試合格人數(shù)及相應的實測難度如下表(表2):
表2:
測試項目 | 1 | 2 | 3 | 4 | 5 |
實測合格人數(shù) | 8 | 8 | 7 | 7 | 2 |
定義統(tǒng)計量,其中為第項的實測難度,為第項的預測難度().規(guī)定:若,則稱該次測試的難度預測合理,否則為不合理,測試前,預估了每個預測項目的難度,如下表(表3)所示:
表3:
測試項目 | 1 | 2 | 3 | 4 | 5 |
預測前預估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判斷本次測試的難度預估是否合理.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com