【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動點,點P在線段OM上,且滿足|OM||OP|=16,求點P的軌跡C2的直角坐標方程;
(Ⅱ)設(shè)點A的極坐標為(2, ),點B在曲線C2上,求△OAB面積的最大值.

【答案】解:(Ⅰ)曲線C1的直角坐標方程為:x=4,
設(shè)P(x,y),M(4,y0),則 ,∴y0= ,
∵|OM||OP|=16,
=16,
即(x2+y2)(1+ )=16,
整理得:(x﹣2)2+y2=4(x≠0),
∴點P的軌跡C2的直角坐標方程:(x﹣2)2+y2=4(x≠0).
(Ⅱ)點A的直角坐標為A(1, ),顯然點A在曲線C2上,|OA|=2,
∴曲線C2的圓心(2,0)到弦OA的距離d= = ,
∴△AOB的最大面積S= |OA|(2+ )=2+
【解析】(Ⅰ)設(shè)P(x,y),利用相似得出M點坐標,根據(jù)|OM||OP|=16列方程化簡即可;
(Ⅱ)求出曲線C2的圓心和半徑,得出B到OA的最大距離,即可得出最大面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2 sinx cosx(x∈R).
(Ⅰ)求f( )的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對角線AC的長為10 cm,容器Ⅱ的兩底面對角線EG,E1G1的長分別為14cm和62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm.現(xiàn)有一根玻璃棒l,其長度為40cm.(容器厚度、玻璃棒粗細均忽略不計)
(Ⅰ)將l放在容器Ⅰ中,l的一端置于點A處,另一端置于側(cè)棱CC1上,求l沒入水中部分的長度;
(Ⅱ)將l放在容器Ⅱ中,l的一端置于點E處,另一端置于側(cè)棱GG1上,求l沒入水中部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為有公共焦點的橢圓與雙曲線的一個交點,且,若橢圓的離心率為,雙曲線的離心率為,的最小值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,右頂點為點

(1)若直線與橢圓相交于點兩點(不是左、右頂點),且,求證:直線過定點,并求出該定點的坐標;

(2)是橢圓的兩個動點,若直線的斜率與的斜率互為相反數(shù),試判斷直線EF的斜率是否為定值?如果是,求出定值;反之,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的離心率為,兩個頂點分別為,.過點的直線交橢圓于兩點,直線的交點為

(1)求橢圓的標準方程;

(2)求證:點在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓, 為拋物線上的動點,過點作圓的兩條切線與軸交于

(1)若,求過點的圓的切線方程;

(2)若,求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,是角的對邊,則其中真命題的序號是__________.

,則上是增函數(shù);

,則是直角三角形;

的最小值為

,則

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 ,點的左焦點,點上位于第一象限內(nèi)的點,關(guān)于原點的對稱點為,,則的離心率為( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案