集合A=(―∞,―2]∪[3,+∞),關于x的不等式(x-2a)·(x+a)>0的解集為B(其中a<0).
(1)求集合B;
(2)設p:x∈A,q:x∈B,且Øp是Øq的充分不必要條件,求a的取值范圍。
(1)(-∞,2a)∪(-a,+∞);(2)(―∞,-3].
解析試題分析:(1)解一元二次不等式(x-2a)·(x+a)>0,可求出B=(-∞,2a)∪(-a,+∞);
(2)依據(jù)題意有p:x=∈(-2,3),q∈[2a,―a],可知(-2,3)[2a,―a]即,解得a≤-3
試題解析:解:(1)∵a<0,2a<-a,∴B={x|x<2a或x>-a}=(-∞,2a)∪(-a,+∞)…5分
(2)∵p:CRA=(-2,3),q:CRB=[2a,―a]
由p是q的充分不必要條件知 CRACRB 8分
∴a≤-3, 所以a的取值范圍為(―∞,-3] 12分
考點:1.一元二次不等式的解法;2.必要條件、充分條件與充要條件的判斷;
科目:高中數(shù)學 來源: 題型:解答題
已知命題,命題。
(1)若p是q的充分條件,求實數(shù)m的取值范圍;
(2)若m=5,“ ”為真命題,“ ”為假命題,求實數(shù)x的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知命題:復數(shù),復數(shù),是虛數(shù);命題:關于的方程的兩根之差的絕對值小于;若為真命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
下列命題中_________為真命題.
①“A∩B=A”成立的必要條件是“AB”; w ②“若x2+y2=0,則x,y全為0”的否命題;
③“全等三角形是相似三角形”的逆命題; ④“圓內(nèi)接四邊形對角互補”的逆否命題.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設命題p:函數(shù)f(x)=lg(ax2-4x+a)的定義域為R;命題q:不等式2x2+x>2+ax,在x∈(-∞,-1)上恒成立,如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com