【題目】如圖,三棱錐P﹣ABC中,△ABC是正三角形,△ACP是直角三角形,∠ABP=∠CBP,AB=BP.

(1)證明:平面ACP⊥平面ABC;
(2)若E為棱PB與P不重合的點(diǎn),且AE⊥CE,求AE與平面ABC所成的角的正弦值.

【答案】
(1)證明:∵∠ABP=∠CBP,AB=BP=BC.

∴△ABP≌△CBP.

∴AP=CP,

又△ACP是直角三角形,∴△ACP是等腰直角三角形,∠APC=90°.

取AC的中點(diǎn)O,連接OP,OB.

則OP⊥AC,OB⊥AC.

不妨設(shè)AC=2.

則OP=1,OB= ,BP=AB=2.

∴OP2+OB2=BP2=4,∴∠BOP=90°.

∴OP⊥OB.又OB∩AC=O.

∴OP⊥平面ABC.OP平面ACP.

∴平面ACP⊥平面ABC.


(2)解:在△ABP中,AE⊥BP,∴AE= =

可得BE= =

在平面BPO內(nèi):過(guò)點(diǎn)E作EF⊥OB,垂足為點(diǎn)F,則EF⊥平面ABC,連接AF.

則∠EAF是AE與平面ABC所成的角.

,可得EF= =

∴sin∠EAF= =


【解析】(1)由△ABP≌△CBP.可得AP=CP,又△ACP是直角三角形,所以△ACP是等腰直角三角形,∠APC=90°.取AC的中點(diǎn)O,連接OP,OB.可得OP⊥AC,OB⊥AC.即OP2+OB2=BP2可推線(xiàn)面垂直,面面垂直。
(2)在△ABP中,AE⊥BP,可得AE,BE。在平面BPO內(nèi):過(guò)點(diǎn)E作EF⊥OB,垂足為點(diǎn)F,則EF⊥平面ABC,連接AF.可得∠EAF是AE與平面ABC所成的角。
【考點(diǎn)精析】本題主要考查了平面與平面垂直的判定和空間角的異面直線(xiàn)所成的角的相關(guān)知識(shí)點(diǎn),需要掌握一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直;已知為兩異面直線(xiàn),A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F(1,0),直線(xiàn)l:x=﹣1,直線(xiàn)l'垂直l于點(diǎn)P,線(xiàn)段PF的垂直平分線(xiàn)交l'于點(diǎn)Q.
(1)求點(diǎn)Q的軌跡方程C;
(2)過(guò)F做斜率為 的直線(xiàn)交C于A,B,過(guò)B作l平行線(xiàn)交C于D,求△ABD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin( ﹣x).
(Ⅰ)求f( )及f(x)的最小正周期T的值;
(Ⅱ)求f(x)在區(qū)間[﹣ ]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,a3+a4=12,公差d=2,記數(shù)列{a2n﹣1}的前n項(xiàng)和為Sn
(1)求Sn;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為T(mén)n , 若a2 , a5 , am成等比數(shù)列,求Tm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 在x1處取得極大值,在x2處取得極小值,滿(mǎn)足x1∈(﹣1,0),x2∈(0,1),則 的取值范圍是(  )
A.
B.(0,1)
C.
D.[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是( )
A.若p∨q為真命題,則p∧q為真命題
B.“a>0,b>0”是“ ≥2”的充要條件
C.命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”
D.命題p:x∈R,x2+x-1<0,則﹁p:x∈R,x2+x-1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能 與韓國(guó)棋手李世石進(jìn)行最后一輪較量, 獲得本場(chǎng)比賽勝利,最終人機(jī)大戰(zhàn)總比分定格 .人機(jī)大戰(zhàn)也引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱(chēng)為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有 的把握認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為 。若每次抽取的結(jié)果是相互獨(dú)立的,求 的分布列,期望 和方差 .
附: ,其中 .

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=log3(x+1).若關(guān)于x的不等式f[x2+a(a+2)]≤f(2ax+2x)的解集為A,函數(shù)f(x)在[-8,8]上的值域?yàn)锽,若“x∈A”是“x∈B”的充分不必要條件,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)從甲、乙兩個(gè)品牌共9個(gè)不同的空氣凈化器中選出3個(gè)分別測(cè)試A、B、C三項(xiàng)指標(biāo),若取出的3個(gè)空氣凈化器中既有甲品牌又有乙品牌的概率為 ,那么9個(gè)空氣凈化器中甲、乙品牌個(gè)數(shù)分布可能是(
A.甲品牌1個(gè),乙品牌8個(gè)
B.甲品牌2個(gè),乙品牌7個(gè)
C.甲品牌3個(gè),乙品牌6個(gè)
D.甲品牌4個(gè),乙品牌5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案