精英家教網 > 高中數學 > 題目詳情

【題目】在下列各函數中,最小值等于2的函數是(
A.y=x+
B.y=cosx+ (0<x<
C.y=
D.y=

【答案】D
【解析】解:對于選項A:當x<0時,A顯然不滿足條件.
選項B:y=cosx+ ≥2,當 cosx=1時取等號,但0<x< ,故cosx≠1,B 顯然不滿足條件.
對于C:不能保證 = ,故錯;
對于D:.∵ex>0,∴ex+ ﹣2≥2 ﹣2=2,
故只有D 滿足條件,
故選D.
【考點精析】掌握基本不等式和基本不等式在最值問題中的應用是解答本題的根本,需要知道基本不等式:,(當且僅當時取到等號);變形公式:;用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】對于實數x,記[x]表示不超過x的最大整數,如[3.14]=3,[﹣0.25]=﹣1.若存在實數t,使得[t]=1,[t2]=2,[t3]=3…[tt]=n同時成立,則正整數n的最大值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)作出函數f(x)的大致圖象;

(2)寫出函數f(x)的單調區(qū)間;

(3)當時,由圖象寫出f(x)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某程序框圖如圖所示,該程序運行后輸出的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點

(1)求證:EF⊥CD;
(2)在平面PAD內求一點G,使GF⊥平面PCB,并證明你的結論;
(3)求DB與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本題滿分12分)

一個盒子中裝有4張卡片,每張卡片上寫有1個數字,數字分別是1、23、4,現(xiàn)從盒子中隨機抽取卡片.

(Ⅰ)若一次從中隨機抽取3張卡片,求3張卡片上數字之和大于或等于7的概率;

(Ⅱ)若第一次隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數字2的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數fx)的圖象如圖所示,曲線BCD為拋物線的一部分.

(Ⅰ)求fx)解析式;

(Ⅱ)若fx)=1,求x的值;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數時都取得極值;

(1)求的值與函數的單調區(qū)間;

(2)若對,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區(qū)間;

(2)若恒成立,試確定實數的取值范圍;

(3)證明: .

查看答案和解析>>

同步練習冊答案