【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*.已知a1=1,a2=,a3=,且當(dāng)n≥2時(shí),4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)證明:為等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.
【答案】見解析
【解析】
(1)解:當(dāng)n=2時(shí),4S4+5S2=8S3+S1,
即4(a1+a2+a3+a4)+5(a1+a2)=8(a1+a2+a3)+a1,
整理得a4=,
又a2=,a3=,
所以a4=.
(2)證明:當(dāng)n≥2時(shí),有4Sn+2+5Sn=8Sn+1+Sn-1,
即4Sn+2+4Sn+Sn=4Sn+1+4Sn+1+Sn-1,
∴4(Sn+2-Sn+1)=4(Sn+1-Sn)-(Sn-Sn-1),
即an+2=an+1-an(n≥2).
經(jīng)檢驗(yàn),當(dāng)n=1時(shí),上式成立.
∵===為常數(shù),且a2-a1=1,
∴數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列.
(3)解:由(2)知,an+1-an= (n∈N*),
等式兩邊同乘2n,
得2nan+1-2n-1an=2(n∈N*).
又20a1=1,
∴數(shù)列{2n-1an}是以1為首項(xiàng),2為公差的等差數(shù)列.
∴2n-1an=2n-1,
即an= (n∈N*).
則數(shù)列{an}的通項(xiàng)公式為an= (n∈N*).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且函數(shù)在和處都取得極值.
(1)求實(shí)數(shù)與的值;
(2)對任意,方程存在三個(gè)實(shí)數(shù)根,求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓,經(jīng)過原點(diǎn)的兩直線滿足,且交圓于不同兩點(diǎn)交, 圓于不同兩點(diǎn),記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張三同學(xué)從7歲起到13歲每年生日時(shí)對自己的身高測量后記錄如下表:
年齡(歲) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高(cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高關(guān)于年齡的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學(xué)7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預(yù)測張三同學(xué)15歲時(shí)的身高.
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點(diǎn).
(1) 證明:AE⊥平面PCD;
(2) 求PB和平面PAD所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長為的正三角形,且與底面垂直,底面是的菱形, 為的中點(diǎn).
(1)求證: ;
(2)求點(diǎn)到平面 的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側(cè)面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點(diǎn),OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和為,且,令.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,用數(shù)學(xué)歸納法證明是18的倍數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面平面,且四邊形為矩形,四邊形為直角梯形, , , , .
(1)求證: 平面;
(2)求直線與平面所成角的余弦值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com