【題目】已知函數(shù),其中.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

【答案】1)見解析;(2.

【解析】

1)求出函數(shù)的定義域和導(dǎo)數(shù),由得出,然后對的大小關(guān)系進(jìn)行分類討論,分析導(dǎo)數(shù)符號,可得出函數(shù)的單調(diào)增區(qū)間和減區(qū)間;

2)由,得出,得出,構(gòu)造函數(shù),將問題轉(zhuǎn)化為,其中,然后利用導(dǎo)數(shù)求出函數(shù)在區(qū)間上的最小值,可得出實(shí)數(shù)的取值范圍.

1)函數(shù)的定義域?yàn)?/span>,

.

當(dāng)時,令,可得.

①當(dāng)時,即當(dāng)時,對任意的,

此時,函數(shù)的單調(diào)遞增區(qū)間為

②當(dāng)時,即當(dāng)時,

,得;令,得.

此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

③當(dāng)時,即當(dāng)時,

,得;令,得.

此時,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

2)由題意,可得,可得,其中.

構(gòu)造函數(shù),,則.

,令,得.

當(dāng)時,;當(dāng)時,.

所以,函數(shù)處取得最小值,

,,則,.

因此,實(shí)數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】推進(jìn)垃圾分類處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對垃圾分類的了解程度,某社區(qū)居委會隨機(jī)抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如下:

得分

男性人數(shù)

40

90

120

130

110

60

30

女性人數(shù)

20

50

80

110

100

40

20

1)從該社區(qū)隨機(jī)抽取一名居民參與問卷測試,試估計(jì)其得分不低于60分的概率;

2)將居民對垃圾分類的了解程度分為比較了解“(得分不低于60)不太了解”(得分低于60)兩類,完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為居民對垃圾分類的了解程度性別有關(guān)?

不太了解

比較了解

男性

女性

3)從參與問卷測試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,連同名男性調(diào)查員一起組成3個環(huán)保宜傳隊(duì).若從這中隨機(jī)抽取3人作為隊(duì)長,且男性隊(duì)長人數(shù)占的期望不小于2.的最小值.

附:

臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)參加一項(xiàng)射擊比賽游戲,其中任何一人每射擊一次擊中目標(biāo)得2分,未擊中目標(biāo)得0分.若甲、乙兩人射擊的命中率分別為,且甲、乙兩人各射擊一次得分之和為2的概率為.假設(shè)甲、乙兩人射擊互不影響,則值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級三個班共有學(xué)生120名,這三個班的男女生人數(shù)如下表所示,已知在全年級中隨機(jī)抽取1名學(xué)生,抽到二班女生的概率是0.2,則_________.現(xiàn)用分層抽樣的方法在全年級抽取30名學(xué)生,則應(yīng)在三班抽取的學(xué)生人數(shù)為________.

一班

二班

三班

女生人數(shù)

20

男生人數(shù)

20

20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若時,討論在區(qū)間上零點(diǎn)個數(shù);

2)若當(dāng)時,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在區(qū)間[0,1]上的函數(shù)yf(x)的圖象如圖所示.對滿足0<x1<x2<1的任意x1,x2,給出下列結(jié)論:

f(x1)-f(x2)>x1x2;

f(x1)-f(x2)<x1x2

x2f(x1)>x1f(x2);

其中正確結(jié)論的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,對于,定義AB的差為;AB之間的距離為

I)若,試寫出所有可能的AB;

II,證明:

i;

ii三個數(shù)中至少有一個是偶數(shù);

III)設(shè)中有m,且為奇數(shù))個元素,記P中所有兩元素間距離的平均值為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=xlnxx+1,gx)=exaxaR

(Ⅰ)求fx)的最小值;

(Ⅱ)若gx≥1R上恒成立,求a的值;

(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐P ABC中,PA⊥平面ABC,Q是BC邊上的一個動點(diǎn),且直線PQ與面ABC所成角的最大值為則該三棱錐外接球的表面積為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案