方程表示焦點在軸的雙曲線,則的取值范圍是(      )

A. B. C. D. 

B

解析試題分析:方程變形為,因為表示焦點在y軸上的雙曲線,所以滿足
考點:雙曲線標準方程
點評:雙曲線焦點位置的確定是看的系數(shù)哪一個系數(shù)為正,焦點就在哪一個坐標軸上

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓的焦點為,,在長軸上任取一點,過作垂直于的直線交橢圓于點,則使得的點的概率為(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

方程mx2-my2=n中,若mn<0,則方程的曲線是(    )

A.焦點在x軸上的橢圓B.焦點在x軸上的雙曲線
C.焦點在y軸上的橢圓D.焦點在y軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

過雙曲線的右焦點作圓的切線(切點為),交軸于點.若為線段的中點,則雙曲線的離心率為

A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知,分別是雙曲線的左、右焦點,過點與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段為直徑的圓外,則雙曲線離心率的取值范圍是

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知點在拋物線上,那么到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為(   ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設橢圓的兩個焦點分別為,過作橢圓長軸的垂線交橢圓于點,
為等腰直角三角形,則橢圓的離心率是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線,過其右焦點且垂直于實軸的直線與雙曲線交于兩點,為坐標原點.若,則雙曲線的離心率為

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

下列命題中真命題的是(  )

A.在同一平面內(nèi),動點到兩定點的距離之差(大于兩定點間的距離)為常數(shù)的點的軌跡是雙曲線
B.在平面內(nèi),F(xiàn)1,F(xiàn)2是定點,|F1F2|=6,動點M滿足|MF1|+|MF2|=6,則點M的軌跡是橢圓
C.“若-3<m<5則方程是橢圓”
D.在直角坐標平面內(nèi),到點和直線距離相等的點的軌跡是直線

查看答案和解析>>

同步練習冊答案