16.某市春節(jié)期間7家超市廣告費(fèi)支出xi(萬元)和銷售額yi(萬元)數(shù)據(jù)如下:
超市ABCDEFG
廣告費(fèi)支出xi1246111319
銷售額yi19324044525354
(1)若用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程;
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:$\stackrel{∧}{y}$=-0.17x2+5x+20,經(jīng)計算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個回歸模型更合適,并用此模型預(yù)測A超市廣告費(fèi)支出為3萬元時的銷售額.參數(shù)數(shù)據(jù)及公式:$\overline{x}$=8,$\overline{y}$=42,$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$xi2=708,
(3)用函數(shù)擬合解決實際問題,這過程通過了收集數(shù)據(jù),畫散點圖,選擇函數(shù)模型,求函數(shù)表達(dá)式,檢驗,不符合重新選擇函數(shù)模型,符合實際,就用函數(shù)模型解決實際問題,寫出這過程的流程圖.

分析 (1)由題意求出$\overline{x}$,$\overline{y}$,$\sum_{i=1}^{5}{x}_{i}^{2}$,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$,代入公式求值,從而得到回歸直線方程;
(2)代入x=3即可得答案.
(3)根據(jù)題意作流程,畫圖即可.

解答 解:(1)由數(shù)據(jù)可得:$\overline{x}$=8,$\overline{y}$=42.
$\hat b═\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{2794-7×8×42}{{708-7×{8^2}}}=1.7$.
$\hat a=\overline y-\hat b\overline x=28.4$
∴y關(guān)于x的線性回歸直線方程為.$\hat y=1.7x+28.4$.
(2)二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,
∵0.75<0.93,
∴二次函數(shù)回歸模型更適合.
∴當(dāng)x=3時,預(yù)測A超市銷售額為33.47萬元.
(3)作流程圖:

點評 本題考查了線性回歸方程的求法及應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)x≥y>0,若存在實數(shù)a,b滿足0≤a≤x,0≤b≤y,且(x-a)2+(y-b)2=x2+b2=y2+a2.則$\frac{y}{x}$的最大值為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的各項均為正數(shù),公比是q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(Ⅰ)求an與bn
(Ⅱ)設(shè)cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.現(xiàn)有如表樣本數(shù)據(jù):
x2324252627
y20.923.125.126.929
經(jīng)計算可知y對x呈線性相關(guān)關(guān)系:
試求:(1)線性回歸方程y=bx+a;
            (2)估計x為何值時,y=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.計算機(jī)中常用的十六進(jìn)制是逢16進(jìn)1的計數(shù)制,采用數(shù)字0~9和字母A~F共16個計數(shù)符號,這些符號與十進(jìn)制的數(shù)的對應(yīng)關(guān)系如表.
十六進(jìn)制01234567
十進(jìn)制01234567
十六進(jìn)制89ABCDEF
十進(jìn)制89101112131415
例如,用十六進(jìn)制表示E+D=1B,則A×C=( 。
A.6EB.78C.5FD.C0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=x2-4ln(x+1)的單調(diào)遞減區(qū)間是( 。
A.(-∞,-2)B.(-1,1)C.(-2,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.證明:${(x-\frac{1}{x})^{2n}}$的展開式中的中間一項是${(-2)^n}\frac{1×3×5×…×(2n-1)}{n!}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合M={(x,y)|y=$\sqrt{9-{x}^{2}}$},N={(x,y)|y=x+b},且M∩N=∅,則b 的取值范圍是(-∞,-3)∪(3$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知關(guān)于某設(shè)備的使用年限x與所支出的維修費(fèi)用y(萬元),有如下統(tǒng)計資料:若y對x呈線性相關(guān)關(guān)系,則回歸直線方程$\widehat{y}$=$\widehat$x+$\widehat{a}$時表示的直線一定過定點( 。
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
A.(5,4)B.(4,5)C.(4,5.5)D.(5.5,4)

查看答案和解析>>

同步練習(xí)冊答案