2.已知sin(π+α)=-$\frac{1}{2}$,求tan($\frac{π}{2}$-α)的值.

分析 利用誘導公式和同角三角函數(shù)關系進行解答.

解答 解:∵sin(π+α)=-$\frac{1}{2}$,
∴sin(π+α)=sinα=-$\frac{1}{2}$,
∴cosα=±$\sqrt{1-(-\frac{1}{2})^{2}}$=±$\frac{\sqrt{3}}{2}$
∴tan($\frac{π}{2}$-α)=cotα=$\frac{cosα}{sinα}$=±$\sqrt{3}$.

點評 本題考查兩角和與差的三角函數(shù),考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知二階矩陣M有特征值λ=8及其對應的一個特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且矩陣M對應的變換將點A(-1,2)變換成A′(-2,4).
(1)求矩陣M;
(2)設直線l在M-1對應的變換作用下得到了直線m:x-y=6,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.過曲線C:y=ex上一點P0(0,1)作曲線C的切線l0交x軸于點Q1(x1,0),又過Q1作x軸的垂線交曲線C于點P1(x1,y1),然后再過P1(x1,y1)作曲線C的切線l1交x軸于點Q2(x2,0),又過Q2作x軸的垂線交曲線C于點P2(x2,y2),…,以此類推,過點Pn的切線ln與x軸相交于點
Qn+1(xn+1,0),再過點Qn+1作x軸的垂線交曲線C于點Pn+1(xn+1,yn+1)(n∈N*).
(1)求x1、x2及數(shù)列{xn}的通項公式;
(2)設曲線C與切線ln及直線Pn+1Qn+1所圍成的圖形面積為Sn,求Sn的表達式;
(3)在滿足(2)的條件下,若數(shù)列{Sn}的前n項和為Tn,求證:$\frac{{T}_{n+1}}{{T}_{n}}$<$\frac{{x}_{n+1}}{{x}_{n}}$(n∈N+).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.用數(shù)學歸納法證明“當n為正奇數(shù)時,xn+yn能被x+y整除”的第二步是(  )
A.證明假設n=k(k≥1且k∈N)時正確,可推出n=k+1正確
B.證明假設n=2k+1(k≥1且k∈N)時正確,可推出n=2k+3正確
C.證明假設n=2k-1(k≥1且k∈N)時正確,可推出n=2k+1正確
D.證明假設n≤k(k≥1且k∈N)時正確,可推出n=k+2時正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知一個口袋中裝有n個紅球(n≥1且n∈N)和2個白球,從中有放回地連續(xù)摸三次,每次摸出兩個球,若兩個球顏色不同則為中獎,否則不中獎.
(1)當n=3時,設三次摸球中(每次摸球后放回)中獎的次數(shù)為ξ,求的ξ分布列;
(2)記三次摸球中(每次摸球后放回)恰有兩次中獎的概率為P,當n取多少時,P最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在直角坐標系xOy中,求曲線C1:5x2+8xy+4y2=1在矩陣M=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$對應的變換作用下得到的新曲線C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.同時擲兩個骰子,則向上的點數(shù)和為8的概率是( 。
A.$\frac{1}{6}$B.$\frac{7}{36}$C.$\frac{5}{36}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若曲線f(x)=x(x-m)2在x=1處取得極小值,則m的值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.設P是圓(x-3)2+(y-1)2=4上的動點,Q是直線x=-3上動點,則|PQ|最小值為( 。
A.3B.5C.4D.11

查看答案和解析>>

同步練習冊答案