【題目】下列關(guān)于回歸分析的說法中錯誤的有( )

(1). 殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預報精確度越高.

(2). 回歸直線一定過樣本中心。

(3). 兩個模型中殘差平方和越小的模型擬合的效果越好

(4) .甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

A. 4 B. 3 C. 2 D. 1

【答案】C

【解析】分析: 可以用來衡量模擬效果好壞的幾個量分別是相關(guān)指數(shù),殘差平方和和相關(guān)系數(shù),只有殘差平方和越小越好,其他的都是越大越好.

詳解:對于(1) 殘差圖中殘差點所在的水平帶狀區(qū)域越寬則回歸方程的預報精確度越低,故(1)錯誤;

對于(2),回歸直線一定過樣本中心,(2)正確;

對于(3),兩個模型中殘差平方和越小的模型擬合的效果越好,(3)正確;

對于(4),越大,擬合效果越好,故(4)錯誤;

故選:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,.分別是的中點,求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為,且對任意的. ,.

(1)求并證明的奇偶性;

(2)判斷的單調(diào)性并證明;

(3);若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為(0,+),若在(0,+)上為增函數(shù),則稱為“一階比增函數(shù)”;若在(0,+)上為增函數(shù),則稱為”二階比增函數(shù)”。我們把所有“一階比增函數(shù)”組成的集合記為1,所有“二階比增函數(shù)”組成的集合記為2。

(1)已知函數(shù),若1,求實數(shù)的取值范圍,并證明你的結(jié)論;

(2)已知0<a<b<c,1的部分函數(shù)值由下表給出:

t

4

求證:;

(3)定義集合,且存在常數(shù)k,使得任取x∈(0,+),<k},請問:是否存在常數(shù)M,使得任意的,任意的x∈(0,+),有<M成立?若存在,求出M的最小值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年3月山東省高考改革實施方案發(fā)布:2020年夏季高考開始全省高考考生總成績將由語文、數(shù)學、外語三門統(tǒng)一高考成績和學生自主選擇的普通高中學業(yè)水平等級性考試科目的成績共同構(gòu)成.省教育廳為了解正就讀高中的學生家長對高考改革方案所持的贊成態(tài)度,隨機從中抽取了100名城鄉(xiāng)家長作為樣本進行調(diào)查,調(diào)查結(jié)果顯示樣本中有25人持不贊成意見.右面是根據(jù)樣本的調(diào)查結(jié)果繪制的等高條形圖.

(Ⅰ)請根據(jù)已知條件與等高條形圖完成下面的列聯(lián)表:

贊成

不贊成

合計

城鎮(zhèn)居民

農(nóng)村居民

合計

(Ⅱ)試判斷我們是否有95%的把握認為“贊成高考改革方案與城鄉(xiāng)戶口有關(guān)”?.

【附】,其中.

0.150

0.100

0.050

0.005

0.001

2.072

2.706

3.841

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列推理過程不是演繹推理的是( ).

①一切奇數(shù)都不能被2整除,2019是奇數(shù), 2019不能被2整除

由“正方形面積為邊長的平方”得到結(jié)論:正方體的體積為棱長的立方;

在數(shù)列中,,由此歸納出的通項公式

由“三角形內(nèi)角和為”得到結(jié)論:直角三角形內(nèi)角和為 .

A. ① ② B. ② ③ C. ③ ④ D. ②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,且PA=PD=DA=2,∠BAD=60°
(I)求證:PB⊥AD;
(II)若PB= , 求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)觀測,某昆蟲的產(chǎn)卵數(shù)y與溫度x有關(guān),現(xiàn)將收集到的溫度xi和產(chǎn)卵數(shù)yi(i=1,2,…,10)的10組觀測數(shù)據(jù)作了初步處理,得到如下圖的散點圖及一些統(tǒng)計量表.

表中 ,

(1)根據(jù)散點圖判斷, , 哪一個適宜作為y與x之間的回歸方程模型?(給出判斷即可,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù).

①試求y關(guān)于x回歸方程;

②已知用人工培養(yǎng)該昆蟲的成本h(x)與溫度x和產(chǎn)卵數(shù)y的關(guān)系為h(x)=x(lny﹣2.4)+170,當溫度x(x取整數(shù))為何值時,培養(yǎng)成本的預報值最。

附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為β=,α=﹣β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設(shè)每一架飛機的引擎在飛行中出現(xiàn)故障率為,且各引擎是否有故障是獨立的,已知4引擎飛機中至少有3個引擎正常運行,飛機就可成功飛行;2引擎飛機要2個引擎全部正常運行,飛機也可成功飛行,要使4引擎飛機比2引擎飛機更安全,則的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案