已知△ABC是直角三角形,斜邊BC的中點(diǎn)為M,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,證明:

答案:略
解析:

證明:如圖所示,以RtABC的直角邊AB,AC所在的直線為坐標(biāo)軸,建立直角坐標(biāo)系,設(shè)B、C兩點(diǎn)的坐標(biāo)分別為(b,0)、(0,c)

因?yàn)辄c(diǎn)MBC的中點(diǎn),故點(diǎn)M的坐標(biāo)為由兩點(diǎn)間距離公式得


提示:

因?yàn)椤?/FONT>ABC是直角三角形,所以選擇直角頂點(diǎn)為坐標(biāo)原點(diǎn),直角邊所在直線為坐標(biāo)軸.這樣建立的直角坐標(biāo)系,便于設(shè)點(diǎn)求解.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是等腰直角三角形,AB=AC=a,AD是斜邊BC上的高,以AD為折痕使∠BDC成直角.在折起后形成的三棱錐A-BCD中,有如下三個結(jié)論:①直線AD⊥平面BCD;②側(cè)面ABC是等邊三角形;③三棱錐A-BCD的體積是
2
24
a3
.其中正確結(jié)論的序號是
 
.(寫出全部正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知ABCD是直角梯形,∠ABC=90°,AD∥BC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)證明:PC⊥CD;
(2)若E是PA的中點(diǎn),證明:BE∥平面PCD;
(3)若PA=3,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC是邊長為3,4,5的直角三角形,點(diǎn)P是此三角形內(nèi)切圓上一動點(diǎn),分別以PA、PB、PC為直徑作圓,則這三個圓的面積之和的最大值與最小值的和為( 。
A、12πB、10πC、8πD、6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,三內(nèi)角A、B、C的度數(shù)成等差數(shù)列,邊a、b、c依次成等比數(shù)列.則△ABC是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年黑龍江哈師大附中高三上期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖是一個直三棱柱被削去一部分后的幾何體的直觀圖與三視圖中的側(cè)視圖、俯視圖.在直觀圖中,的中點(diǎn).又已知側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

(1)求證:EM∥平面ABC;

(2)試問在棱DC上是否存在點(diǎn)N,使NM⊥平面? 若存在,確定

點(diǎn)N的位置;若不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案