設(shè)是定義在R上的奇函數(shù),且對任意,當(dāng)時,都有.
(1)求證:在R上為增函數(shù).
(2)若對任意恒成立,求實(shí)數(shù)k的取值范圍.
(1) 函數(shù),可知f(-x)=-f(x),則不等式,再結(jié)合a,b的任意性,和函數(shù)單調(diào)性定義可得證。
(2) . 13分
【解析】
試題分析:(1)略 4分
(2)由(1)知為R上的單調(diào)遞增函數(shù),
對任意恒成立,
,
即, 7分
,對任意恒成立, 9分
即k小于函數(shù)的最小值. 11分
令,則
. 13分
考點(diǎn):本試題主要是考查了抽象函數(shù)的奇偶性和單調(diào)性的綜合運(yùn)用,屬于中檔題。同時結(jié)合不等式的知識考查了分析問題和解決問題的能力。
點(diǎn)評:解決該試題的關(guān)鍵是對于已知中函數(shù)為奇函數(shù),能將已知的分式不等式翻譯為變量差與對應(yīng)的函數(shù)值差,回歸到函數(shù)的單調(diào)性定義上判定和證明,同時利用第一問的結(jié)論,去掉抽象函數(shù)的符號,轉(zhuǎn)換為求解指數(shù)不等式的問題來得到。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省徐州三中高三(上)月考數(shù)學(xué)試卷(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com