【題目】某項(xiàng)科研活動共進(jìn)行了5次試驗(yàn),其數(shù)據(jù)如表所示:
特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
x | 555 | 559 | 551 | 563 | 552 |
y | 601 | 605 | 597 | 599 | 598 |
(Ⅰ)從5次特征量y的試驗(yàn)數(shù)據(jù)中隨機(jī)地抽取兩個數(shù)據(jù),求至少有一個大于600的概率;
(Ⅱ)求特征量y關(guān)于x的線性回歸方程 ;并預(yù)測當(dāng)特征量x為570時(shí)特征量y的值.
(附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為 = , )
【答案】解:(Ⅰ)從5次特征量y的試驗(yàn)數(shù)據(jù)中隨機(jī)地抽取兩個數(shù)據(jù),共有 =10種方法,都小于600,有 =3種方法,∴至少有一個大于600的概率= =0.7;
(Ⅱ) =554, =600, = = =0.25, = ﹣ =461.5,∴ =0.25x+461.5,
x=570, =604,即當(dāng)特征量x為570時(shí)特征量y的值為604.
【解析】(Ⅰ)利用對立事件的概率公式,可得結(jié)論;(Ⅱ)求出回歸系數(shù),即可求特征量y關(guān)于x的線性回歸方程 ;并預(yù)測當(dāng)特征量x為570時(shí)特征量y的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識競賽為主的《中國詩詞大會》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個等級,隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級人數(shù)的條形圖.
(1)若將一般等級和良好等級合稱為合格等級,根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認(rèn)為選手成績“優(yōu)秀”與文化程度有關(guān)?
優(yōu)秀 | 合格 | 合計(jì) | |
大學(xué)組 | |||
中學(xué)組 | |||
合計(jì) |
注:,其中.
0.10 | 0.05 | 0.005 | |
2.706 | 3.841 | 7.879 |
(2)若參賽選手共6萬人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級的選手人數(shù).
(3)在優(yōu)秀等級的選手中取6名,依次編號為1,2,3,4,5,6.在良好等級的選手中取6名,依次編號為1,2,3,4,5,6,在選出的6名優(yōu)秀等級的選手中任取一名,記其編號為,在選出的6名良好等級的選手中任取一名,記其編號為,求使得方程組有唯一一組實(shí)數(shù)解的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30) | 2 | 0.05 |
合計(jì) | M | 1 |
(1)求出表中M,p及圖中a的值;
(2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(kR),且滿足f(﹣1)=f(1).
(1)求k的值;
(2)若函數(shù)y=f(x)的圖象與直線沒有交點(diǎn),求a的取值范圍;
(3)若函數(shù),x[0,log23],是否存在實(shí)數(shù)m使得h(x)最小值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)的圖象經(jīng)過點(diǎn)( , ).若函數(shù)g(x)的定義域?yàn)镽,當(dāng)x∈[﹣2,2]時(shí),有g(shù)(x)=f(x),且函數(shù)g(x+2)為偶函數(shù),則下列結(jié)論正確的是( )
A.g(π)<g(3)<g( )
B.g(π)<g( )<g(3)??
C.g( )<g(3)<g(π)
D.g( )<g(π)<g(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣x+ ,其中a>0
(Ⅰ)若f(x)在(2,+∞)上存在極值點(diǎn),求a的取值范圍;
(Ⅱ)設(shè)x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,記為M(a).則a≤e+ 時(shí),M(a)是否存在最大值?若存在,求出最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e為自然對數(shù)的底數(shù),若f(1)=0,f′(x)是f(x)的導(dǎo)函數(shù),函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個零點(diǎn),則a的取值范圍是( )
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù) 的圖象上每個點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的4倍,再向左平移 ,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個單調(diào)遞減區(qū)間為( )
A.
B. ??
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com