【題目】如圖所示,四棱錐PABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,ECD的中點(diǎn),PA⊥底面ABCDPA.

(1)證明:平面PBE⊥平面PAB;

(2)求二面角ABEP的大小.

【答案】(1)見(jiàn)解析(2)60°

【解析】試題分析:(I)連接BD,由已知中四棱錐P﹣ABCD的底面ABCD是邊長(zhǎng)為1的菱形,∠BCD=60°,ECD的中點(diǎn),PA⊥底面ABCD,我們可得BE⊥ABPA⊥BE,由線面垂直的判定定理可得BE⊥平面PAB,再由面面平行的判定定理可得平面PBE⊥平面PAB;

II)由(I)知,BE⊥平面PAB,進(jìn)而PB⊥BE,可得∠PBA是二面角A﹣BE﹣P的平面角.解Rt△PAB即可得到二面角A﹣BE﹣P的大。

證明:(I)如圖所示,連接BD,由ABCD是菱形且∠BCD=60°知,

△BCD是等邊三角形.因?yàn)?/span>ECD的中點(diǎn),所以BE⊥CD,又AB∥CD,所以BE⊥AB

又因?yàn)?/span>PA⊥平面ABCD,BE平面ABCD

所以PA⊥BE,而PA∩AB=A,因此 BE⊥平面PAB

BE平面PBE,所以平面PBE⊥平面PAB

解:(II)由(I)知,BE⊥平面PAB,PB平面PAB,所以PB⊥BE

AB⊥BE,所以∠PBA是二面角A﹣BE﹣P的平面角.

Rt△PAB中,..

故二面角A﹣BE﹣P的大小為60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示在6×6的方格中,有A,B兩個(gè)格子,則從該方格表中隨機(jī)抽取一個(gè)矩形,該矩形包含格子A但不包含格子B的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某生產(chǎn)旅游紀(jì)念品的工廠,擬在2017年度進(jìn)行系列促銷(xiāo)活動(dòng),經(jīng)市場(chǎng)調(diào)查和測(cè)算,該紀(jì)念品的年銷(xiāo)售量 (單位:萬(wàn)件)與年促銷(xiāo)費(fèi)用 (單位:萬(wàn)元)之間滿(mǎn)足 成反比例.若不搞促銷(xiāo)活動(dòng),紀(jì)念品的年銷(xiāo)售量只有1萬(wàn)件.已知加工廠2017年生產(chǎn)紀(jì)念品的固定投資為3萬(wàn)元,沒(méi)生產(chǎn)1萬(wàn)件紀(jì)念品另外需要投資32萬(wàn)元.當(dāng)工廠把每件紀(jì)念品的售價(jià)定為“年平均每件生產(chǎn)成本的1.5倍”與“年平均每件所占促銷(xiāo)費(fèi)的一半”之和時(shí),則當(dāng)年的產(chǎn)量和銷(xiāo)量相等.(利潤(rùn)=收入-生產(chǎn)成本-促銷(xiāo)費(fèi)用)
(Ⅰ)請(qǐng)把該工廠2017年的年利潤(rùn) (單位:萬(wàn)元)表示成促銷(xiāo)費(fèi) (單位:萬(wàn)元)的函數(shù);
(Ⅱ)試問(wèn):當(dāng)2017年的促銷(xiāo)費(fèi)投入多少萬(wàn)元時(shí),該工程的年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只小船以的速度由南向北勻速駛過(guò)湖面,在離湖面高20米的橋上,一輛汽車(chē)由西向東以的速度前進(jìn)(如圖),現(xiàn)在小船在水平面上的點(diǎn)以南的40米處,汽車(chē)在橋上點(diǎn)以西的30米處(其中水平面),請(qǐng)畫(huà)出合適的空間圖形并求小船與汽車(chē)間的最短距離.(不考慮汽車(chē)與小船本身的大小)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是四棱錐的平面展開(kāi)圖,其中四邊形ABCD為正方形,E,F,G,H分別為PA,PD,PC,PB的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論中錯(cuò)誤的是( )

A. 平面平面ABCD

B. 直線BE,CF相交于一點(diǎn)

C. EF//平面BGD

D. 平面BGD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an},{bn}的通項(xiàng)公式分別是an=(﹣1)n+2016a,bn=2+ ,若an<bn , 對(duì)任意n∈N+恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn= ,求證:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點(diǎn),則下列敘述正確的是( )

A. AC⊥平面ABB1A1 B. CC1與B1E是異面直線

C. A1C1∥B1E D. AE⊥BB1

查看答案和解析>>

同步練習(xí)冊(cè)答案