{an}為等差數(shù)列,a15=8,a60=20,a75=    .

 

24

【解析】【思路點撥】直接解出首項和公差,從而求得a75,或利用a15,a30,a45,a60,a75成等差數(shù)列直接求得.

【解析】
方法一
:{an}為等差數(shù)列,設(shè)公差為d,首項為a1,那么

解得:a1=,d=.

所以a75=a1+74d=+74×=24.

方法二:因為{an}為等差數(shù)列,所以a15,a30,a45,a60,a75也成等差數(shù)列,設(shè)公差為d,a60-a15=3d,所以d=4,a75=a60+d=20+4=24.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知{an}是各項均為正數(shù)的等比數(shù)列,a1+a2=2(+),a3+a4+a5=64(++),

(1){an}的通項公式.

(2)設(shè)bn=(an+)2,求數(shù)列{bn}的前n項和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

已知等差數(shù)列{an}的公差d0,a1,a3,a9成等比數(shù)列,=(  )

(A)(B)(C)(D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十七第六章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

若不等式組所表示的平面區(qū)域被直線y=kx+2分為面積相等的兩部分,k的值為(  )

(A) (B) (C) (D)2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:解答題

設(shè)等差數(shù)列{an}的前n項和為Sn,已知a3=12,S12>0,S13<0.

(1)求公差d的取值范圍.

(2){an}n項和Sn最大時n的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)等差數(shù)列{an}的前n項和為Sn,S3=12,S6=42,a10+a11+a12=(  )

(A)156(B)102(C)66(D)48

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十第十章第七節(jié)練習(xí)卷(解析版) 題型:解答題

已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.

(1)求取出的4個球均為黑球的概率.

(2)求取出的4個球中恰有1個紅球的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十四選修4-2第一節(jié)練習(xí)卷(解析版) 題型:解答題

求函數(shù)y=x2在矩陣M=變換作用下的解析式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:填空題

某畢業(yè)生參加人才招聘會,分別向甲、乙、丙三個公司投遞了個人簡歷.假定該畢業(yè)生得到甲公司面試的概率為,得到乙、丙兩公司面試的概率均為p,且三個公司是否讓其面試是相互獨立的.X為該畢業(yè)生得到面試的公司個數(shù).P(X=0)=,則隨機變量X的數(shù)學(xué)期望E(X)=   .

 

查看答案和解析>>

同步練習(xí)冊答案