已知函數(shù)f(x)=Acos(ωxφ)(A>0,ω>0,φ∈R),則“f(x)是奇函數(shù)”是“φ”的______條件.
必要不充分
φf(x)=Acos =-Asin ωx為奇函數(shù),∴“f(x)是奇函數(shù)”是“φ”的必要條件.
f(x)=Acos(ωxφ)是奇函數(shù)⇒f(0)=0⇒φkπ(k∈Z)D/⇒φ.
∴“f(x)是奇函數(shù)”不是“φ”的充分條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)在函數(shù)的圖象上,直線圖象的任意兩條對稱軸,且的最小值為.
(1)求函數(shù)的單遞增區(qū)間和其圖象的對稱中心坐標(biāo);
(2)設(shè),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),xÎR.
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來的,把所得到的圖象再向左平移單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最小值.  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=Asin(ωx+φ)(A>0,ω>0)的最小正周期為2,且當(dāng)x=時,f(x)的最大值為2.
(1)求f(x)的解析式.
(2)在閉區(qū)間[,]上是否存在f(x)的對稱軸?如果存在求出其對稱軸.若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對應(yīng)值如下表,f(x)的導(dǎo)函數(shù)yf′(x)的圖象如圖,下列關(guān)于函數(shù)f(x)的四個命題:
x
-1
0
4
5
f(x)
1
2
2
1
 

①函數(shù)yf(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時,函數(shù)yf(x)-a有4個零點(diǎn).其中真命題的個數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列說法:
①正切函數(shù)在定義域內(nèi)是增函數(shù);
②函數(shù)f(x)=2tan 的單調(diào)遞增區(qū)間是 (k∈Z);
③函數(shù)y=2tan的定義域是;
④函數(shù)y=tan x+1在上的最大值為+1,最小值為0.
其中正確說法的序號是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A,B,C,D是函數(shù)一個周期內(nèi)的圖象上的四個點(diǎn),如圖所示,B為軸上的點(diǎn),C為圖像上的最低點(diǎn),E為該函數(shù)圖像的一個對稱中心,B與D關(guān)于點(diǎn)E對稱,軸上的投影為,則的值為(  )

A.    B.
C.    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將函數(shù)y=sin(2xφ)的圖象沿x軸向左平移個單位后,得到一個偶函數(shù)的圖象,則φ的一個可能取值為(  ).
A.B.C.0D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2sin ωx·cos ωx+2cos2ωx(其中ω>0),且函數(shù)f(x)的周期為π.
(1)求ω的值;
(2)將函數(shù)yf(x)的圖象向右平移個單位長度,再將所得圖象各點(diǎn)的橫坐標(biāo)縮小到原來的倍(縱坐標(biāo)不變)得到函數(shù)yg(x)的圖象,求函數(shù)g(x)在上的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案