精英家教網 > 高中數學 > 題目詳情
(2012•汕頭一模)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(1)求證:AF⊥平面CBF;
(2)設FC的中點為M,求證:OM∥平面DAF;
(3)求三棱錐F-CBE的體積.
分析:1)利用線面垂直的性質定理可得CB⊥AF.再利用圓的直徑所對圓周角是直角的性質可得AF⊥BF,再利用線面垂直的判定定理即可證明;
(2)取線段CD的中點N,連接MN,ON.利用三角形的中位線定理和平行四邊形的性質定理可得:MN∥DF,OA∥DA,利用面面平行的判定定理可得:平面OMN∥平面DAF,利用其性質定理即可得出線面平行;
(3)由(1)可得:BC⊥平面ABEF,即BC為三棱錐C-BEF的高,由已知可得△OEF是邊長為1的等邊三角形即可得出其面積,利用三棱錐的體積計算公式即可得出.
解答:(1)證明:∵矩形ABCD⊥平面ABEF,矩形ABCD∩平面ABEF,BC⊥AB,
∴CB⊥平面ABEF,∴CB⊥AF.
由AB為圓O的直徑,∴∠AFB=90°,∴AF⊥BF.
又BC∩BF=B,∴AF⊥平面CBF.
(2)證明:取線段CD的中點N,連接MN,ON.又M為CF的中點,∴MN∥DF,
∵DN
.
OA,∴四邊形OADN為平行四邊形,∴OA∥DA.
∵ON∩MN=N,∴平面OMN∥平面DAF,
∴OM∥平面DAF.
(3)連接OE,OF,則OE=OF=EF=1,∴△OEF為等邊三角形,∴S△OEF=
3
4
×12=
3
4
,
∴VF-CBE=VC-BEF=
1
3
S△BEF•BC
=
1
3
×
3
4
×1=
3
12
點評:本題綜合考查了線面、面面垂直的判定與性質定理、線面與面面平行的判定與性質定理、三角形的中位線定理、平行四邊形的性質、等邊三角形的性質、三棱錐的體積、圓的性質等基礎知識與基本技能,考查了空間想象能力、推理能力和計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•汕頭一模)(坐標系與參數方程選做題)過點(2,
π
3
)
且平行于極軸的直線的極坐標方程為
ρsinθ=
3
ρsinθ=
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•汕頭一模)(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•汕頭一模)某商店經銷一種洗衣粉,年銷售總量為6000包,每包進價為2.8元,銷售價為3.4元,全年分若干次進貨,每次進貨均為x包,已知每次進貨的運輸勞務費為62.5元,全年保管費為1.5x元.
(Ⅰ)將該商店經銷洗衣粉一年的利潤y(元)元表示為每次進貨量x(包)的函數;
(Ⅱ)為使利潤最大,每次應進貨多少包?

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•汕頭一模)如圖,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,DC=BC=2PA,E為DB的中點.
(Ⅰ)證明:AE⊥BC;
(Ⅱ)若點F是線段BC上的動點,設平面PFE與平面PBE所成的平面角大小為θ,當θ在[0,
π4
]內取值時,直線PF與平面DBC所成的角為α,求tanα的取值范圍.

查看答案和解析>>

同步練習冊答案