解答:(本題滿分(14分),第(1)小題(5分),第(2)小題(5分),第(3)小題4分))
解:(1)因?yàn)辄c(diǎn)P
n(n,S
n)都在函數(shù)f(x)=x
2+2x的圖象上
所以
Sn=n2+2nn∈N*------------------------(1分)
當(dāng)n=1時,a
1=S
1=1+2=3
當(dāng)n≥2時,
an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1(*)
令n=1,a
1=2+1=3,也滿足(*)式-------------------(3分)
所以,數(shù)列{a
n}的通項公式是a
n=2n+1.------------------------(4分)
(2)
bn==(-)------------------------(6分)
∴
Bn=[(-)+(-)+…+(-)]=
(-)=---------------(8分)
(3)因?yàn)?span id="aaibtma" class="MathJye">
cn=
t2n+1,所以
=t2,
則數(shù)列{c
n}成公比為等比數(shù)列t
2的等比數(shù)列.
∵t>0
當(dāng)t=1時,T
n=n;
t>0,t≠1,Tn=;------------------------(10分)
當(dāng)t=1時,
==1當(dāng)t>1時,
==t2當(dāng)0<t<1時,
==1.
∴
=-------------(14分)