【題目】如圖,直四棱柱的底面是菱形,,,,E,M,N分別是,,的中點.
(1)證明:平面;
(2)求點C到平面的距離.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有如下性質:如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).
(1)已知,利用上述性質,求函數(shù)的單調區(qū)間和值域;
(2)對于(1)中的函數(shù)和函數(shù),若對任意,總存在,使得成立,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】每年9月第三個公休日是全國科普日.某校為迎接2019年全國科普日,組織了科普知識競答活動,要求每位參賽選手從4道“生態(tài)環(huán)保題”和2道“智慧生活題”中任選3道作答(每道題被選中的概率相等),設隨機變量ξ表示某選手所選3道題中“智慧生活題”的個數(shù).
(Ⅰ)求該選手恰好選中一道“智慧生活題”的概率;
(Ⅱ)求隨機變量ξ的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3ax2﹣x+1(a∈R).
(1)當a=2時,求曲線y=f(x)在點(1,f (1))處的切線方程;
(2)當a<0時,設g(x)=f(x)+x.
①求函數(shù)g(x)的極值;
②若函數(shù)g(x)在[1,2]上的最小值是﹣9,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)
(1)討論函數(shù)在區(qū)間上的極值點的個數(shù);
(2)已知對任意的恒成立,求實數(shù)k的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形是正方形,平面,,分別是線段,的中點,.
(I)在棱上找一點,使得平面平面,請寫出點的位置,并加以證明;
(Ⅱ)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的單調區(qū)間;
(2)當時,證明: (其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯(lián)表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否在犯錯誤的概率不超過0.5%的前提下認為喜愛打籃球與性別有關?說明你的理由.下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005] | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com