【題目】如圖所示,在正三棱柱ABC-A1B1C1中,已知D,E分別為BCB1C1的中點(diǎn),點(diǎn)F在棱CC1上,且EFC1D.求證:

1)直線(xiàn)A1E∥平面ADC1;

2)直線(xiàn)EF⊥平面ADC1

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】

(1)先證明A1EAD,再證明直線(xiàn)A1E∥平面ADC1;(2)先證明ADEF,EFC1D,再證明直線(xiàn)EF⊥平面ADC1

1)連接ED,∵DE分別為BC,B1C1的中點(diǎn),

B1EBDB1E=BD,

∴四邊形B1BDE是平行四邊形,

BB1DEBB1=DE,又BB1AA1BB1=AA1,

AA1DEAA1=DE

∴四邊形AA1ED是平行四邊形,

A1EAD,又∵A1E平面ADC1AD平面ADC1,

∴直線(xiàn)A1E∥平面ADC1

2)在正三棱柱ABC-A1B1C1中,BB1⊥平面ABC,又AD平面ABC,所以ADBB1

又△ABC是正三角形,且DBC的中點(diǎn),

ADBC,又BB1,BC平面B1BCC1,BB1BC=B,

AD⊥平面B1BCC1,又EF平面B1BCC1

ADEF,

EFC1D,C1D,AD平面ADC1,C1DAD=D

∴直線(xiàn)EF⊥平面ADC1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的離心率為,且過(guò)點(diǎn).

(1)求橢圓的方程;

(2)設(shè)為橢圓上任一點(diǎn), 為其右焦點(diǎn),點(diǎn)滿(mǎn)足.

①證明: 為定值;

②設(shè)直線(xiàn)與橢圓有兩個(gè)不同的交點(diǎn),與軸交于點(diǎn).若成等差數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面是菱形,是棱的中點(diǎn),在線(xiàn)段上,且.

(1)證明:

(2)若,面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,角A,B,C的對(duì)邊分別為a,bc.已知2cos(BC)14cosBcosC

)求A;

)若a2△ABC的面積為2,求bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】最近幾年,每年11月初,黃浦江上漂浮著的水葫蘆便會(huì)迅速增長(zhǎng),嚴(yán)重影響了市容景觀,為了解決這個(gè)環(huán)境問(wèn)題,科研人員進(jìn)行科研攻關(guān),下圖是科研人員在實(shí)驗(yàn)室池塘中觀察水葫蘆面積與時(shí)間的函數(shù)關(guān)系圖像,假設(shè)其函數(shù)關(guān)系為指數(shù)函數(shù),并給出下列說(shuō)法:

①此指數(shù)函數(shù)的底數(shù)為;

②在第個(gè)月時(shí),水葫蘆的面積會(huì)超過(guò)

③設(shè)水葫蘆面積蔓延至所需的時(shí)間分別為,則有;其中正確的說(shuō)法有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】流行性感冒多由病毒引起,據(jù)調(diào)查,空氣月平均相對(duì)濕度過(guò)大或過(guò)小時(shí),都有利于一些病毒繁殖和傳播,科學(xué)測(cè)定,當(dāng)空氣月平均相對(duì)濕度大于65010或小于時(shí),有利于病毒繁殖和傳播.下表記錄了某年甲、乙兩個(gè)城市12個(gè)月的空氣月平均相對(duì)濕度.

第一季度

第二季度

第三季度

第四季度

1

2

3

4

5

6

7

8

9

10

11

12

甲地

乙地

(I)從上表12個(gè)月中,隨機(jī)取出1個(gè)月,求該月甲地空氣月平均相對(duì)濕度有利于病毒繁殖和傳播的概率;

(Ⅱ)從上表第一季度和第二季度的6個(gè)月中隨機(jī)取出2個(gè)月,記這2個(gè)月中甲、乙兩地空氣月平均相對(duì)濕度都有利于病毒繁殖和傳播的月份的個(gè)數(shù)為,求的分布列;

(Ⅲ)若,設(shè)乙地上表12個(gè)月的空氣月平均相對(duì)濕度的中位數(shù)為,求的最大值和最小值.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中《方田》章有弧田面積計(jì)算問(wèn)題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公式為:弧田面積(弦乘矢+矢乘矢),弧田是由圓弧(簡(jiǎn)稱(chēng)為弧田的。┖鸵詧A弧的端點(diǎn)為端點(diǎn)的線(xiàn)段(簡(jiǎn)稱(chēng) (弧田的弦)圍成的平面圖形,公式中指的是弧田的弦長(zhǎng),等于弧田的弧所在圓的半徑與圓心到弧田的弦的距離之差.現(xiàn)有一弧田,其弦長(zhǎng)等于,其弧所在圓為圓,若用上述弧田面積計(jì)算公式計(jì)算得該弧田的面積為,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) 是由組成的列的數(shù)表每個(gè)數(shù)恰好出現(xiàn)一次),

若存在 ,使得既是第行中的最大值,也是第列中的最小值,則稱(chēng)數(shù)表為一個(gè)“數(shù)表”為數(shù)表的一個(gè)“值”,

對(duì)任意給定的,所有“數(shù)表”構(gòu)成的集合記作

判斷下列數(shù)表是否是“數(shù)表”.若是,寫(xiě)出它的一個(gè)“值”;

,

(Ⅱ)求證:若數(shù)表是“數(shù)表”,則的“值”是唯一的;

(Ⅲ)在中隨機(jī)選取一個(gè)數(shù)表,記的“值”為,求的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Cab0),以橢圓短軸的一個(gè)頂點(diǎn)B與兩個(gè)焦點(diǎn)F1,F2為頂點(diǎn)的三角形周長(zhǎng)是4+2,且∠BF1F2=

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)若過(guò)點(diǎn)Q1,)引曲線(xiàn)C的弦AB恰好被點(diǎn)Q平分,求弦AB所在的直線(xiàn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案