(本小題滿分14分)某公司決定采用增加廣告投入和技術(shù)改造投入兩項(xiàng)措施來(lái)獲得更大的收益.通過(guò)對(duì)市場(chǎng)的預(yù)測(cè),當(dāng)對(duì)兩項(xiàng)投入都不大于3(百萬(wàn)元)時(shí),每投入(百萬(wàn)元)廣告費(fèi),增加的銷(xiāo)售額可近似的用函數(shù)(百萬(wàn)元)來(lái)計(jì)算;每投入x(百萬(wàn)元)技術(shù)改造費(fèi)用,增加的銷(xiāo)售額可近似的用函數(shù)(百萬(wàn)元)來(lái)計(jì)算.現(xiàn)該公司準(zhǔn)備共投入3(百萬(wàn)元),分別用于廣告投入和技術(shù)改造投入,請(qǐng)?jiān)O(shè)計(jì)一種資金分配方案,使得該公司的銷(xiāo)售額最大. (參考數(shù)據(jù):≈1.41,≈1.73)

 

【答案】

 

解:設(shè)3百萬(wàn)元中技術(shù)改造投入為x(百萬(wàn)元),廣告費(fèi)投入為3-x(百萬(wàn)元),則廣告收入帶來(lái)的銷(xiāo)售額增加值為-2(3-x)2+14(3-x)(百萬(wàn)元),技術(shù)改造投入帶來(lái)的銷(xiāo)售額增加值為-x3+2x2+5x(百萬(wàn)元),所以,投入帶來(lái)的銷(xiāo)售額增加值F(x)=-2(3-x)2+14(3-x)-x3+2x2+5x.

整理上式得F(x)=-x3+3x+24,

因?yàn)镕′(x)=-x2+3,令F′(x)=0,解得x=或x=-(舍去),

當(dāng)x∈[0,),F(xiàn)′(x)>0,當(dāng)x∈(,3]時(shí),F(xiàn)′(x)<0,

所以,x=≈1.73時(shí),F(xiàn)(x)取得最大值.

所以,當(dāng)該公司用于廣告投入1.27(百萬(wàn)元),用于技術(shù)改造投入1.73(百萬(wàn)元)時(shí),公司將有最大的銷(xiāo)售額.

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案