已知圓和圓.
(1)判斷圓和圓的位置關(guān)系;
(2)過(guò)圓的圓心作圓的切線(xiàn),求切線(xiàn)的方程;
(3)過(guò)圓的圓心作動(dòng)直線(xiàn)交圓于A,B兩點(diǎn).試問(wèn):在以AB為直徑的所有圓中,是否存在這樣的圓,使得圓經(jīng)過(guò)點(diǎn)?若存在,求出圓的方程;若不存在,請(qǐng)說(shuō)明理由.
(1)外離;
(2)或;
(3)存在圓:或,使得圓經(jīng)過(guò)點(diǎn) 。
解析試題分析:(1)求出兩圓的圓心距,在比較其與 的大小關(guān)系,從而確定兩圓的位置關(guān)系;(2)由點(diǎn)
斜式設(shè)出切線(xiàn)方程,然后用點(diǎn)線(xiàn)距離公式建立關(guān)于的方程;(2)斜率不存在時(shí),易知圓也是滿(mǎn)足題意的圓;斜率存在時(shí),假設(shè)存在以為直徑的圓經(jīng)過(guò)點(diǎn),則,所以,則可得,再把直線(xiàn)方程與圓的方程聯(lián)立可求,,代入上式可得關(guān)于的方程。
(1)因?yàn)閳A的圓心,半徑,圓的圓心,半徑,
所以圓和圓的圓心距,
所以圓與圓外離. 3分
(2)設(shè)切線(xiàn)的方程為:,即,
所以到的距離,解得.
所以切線(xiàn)的方程為或. ....7分
(3)。┊(dāng)直線(xiàn)的斜率不存在時(shí),直線(xiàn)經(jīng)過(guò)圓的圓心,此時(shí)直線(xiàn)與圓的交點(diǎn)為,,即為圓的直徑,而點(diǎn)在圓上,即圓也是滿(mǎn)足題意的圓........8分
ⅱ)當(dāng)直線(xiàn)的斜率存在時(shí),設(shè)直線(xiàn),由,
消去整理,得,
由△,得或.
設(shè),則有 ① 9分
由①得, ②
, ③
若存在以為直徑的圓經(jīng)過(guò)點(diǎn),則,所以,
因此,即, 10分
則,所以,,滿(mǎn)足題意.
此時(shí)以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓心為的圓經(jīng)過(guò)點(diǎn)(0,),(1,),且圓心在直線(xiàn): 上,求圓心為的圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C過(guò)點(diǎn)P(1,1),且與圓M:(x+2)2+(x+2)2=r2(r>0)2關(guān)于直線(xiàn)x+y+2=0對(duì)稱(chēng).
⑴求圓C的方程;
⑵設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求的最小值;
⑶過(guò)點(diǎn)P作兩條相異直線(xiàn)分別與圓C相交于A,B,且直線(xiàn)PA和直線(xiàn)PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線(xiàn)OP和AB是否平行?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓C的方程為,過(guò)點(diǎn)M(2,4)作圓C的兩條切線(xiàn),切點(diǎn)分別為A,B,
直線(xiàn)AB恰好經(jīng)過(guò)橢圓T:(a>b>0)的右頂點(diǎn)和上頂點(diǎn).
(1)求橢圓T的方程;
(2)已知直線(xiàn)l:y=kx+(k>0)與橢圓T相交于P,Q兩點(diǎn),O為坐標(biāo)原點(diǎn),
求△OPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知以點(diǎn)P為圓心的圓經(jīng)過(guò)點(diǎn)A(-1,0)和B(3,4),線(xiàn)段AB的垂直平分線(xiàn)交圓P于點(diǎn)C和D,且|CD|=4.
(1)求直線(xiàn)CD的方程;
(2)求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓:與軸相切,點(diǎn)為圓心.
(1)求的值;
(2)求圓在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)與圓相切,為切點(diǎn).求四邊形面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓滿(mǎn)足:①截y軸所得弦長(zhǎng)為2;②被x軸分成兩段圓弧,其弧長(zhǎng)的比為3∶1;③圓心到直線(xiàn)l:x-2y=0的距離為,求該圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知圓C的圓心是直線(xiàn)與x軸的交點(diǎn),且圓C與直線(xiàn)x+y+3=0相切,則圓C的方程為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com