一個多面體的直觀圖和三視圖如下:(其中分別是中點)

(1)求證:平面;

(2)求多面體的體積.

 

【答案】

(1) 取中點,連,由分別是中點,可設:, ∴面 (2)

【解析】

試題分析:(1)由三視圖知,該多面體是底面為直角三角形的直三棱柱,且,

,∴.     ---2分

中點,連,由分別是中點,可設:,

∴面…          ---8分

(2)作,由于三棱柱為直三棱柱

,

,---12

考點:三視圖與線面位置關系柱體體積計算

點評:本題的關鍵是先由三視圖找到直觀圖中對應的邊長及邊的垂直關系

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)一個多面體的直觀圖和三視圖如圖所示,其中M、N分別是AB、AC的中點,G是DF上的一動點.
(Ⅰ)求證:GN⊥AC;
(Ⅱ)求二面角F-MC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示精英家教網(wǎng)
(1)求證:PA⊥BD;
(2)是否在線段PD上存在一Q點,使二面角Q-AC-D的平面角為30°,設λ=
DQDP
,若存在,求λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示:

(I)求證:PA⊥BD;
(II)連接AC、BD交于點O,在線段PD上是否存在一點Q,使直線OQ與平面ABCD所成的角為30°?若存在,求
|DQ||DP|
的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示,其中M、G分別是AB、DF的中點.
(1)在AD上(含A、D端點)確定一點P,使得GP∥平面FMC;
(2)一只蒼蠅在幾何體ADF-BCE內(nèi)自由飛翔,求它飛入幾何體F-AMCD內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示,其中M、G分別是AB、DF的中點.精英家教網(wǎng)
(1)求證:CM⊥平面FDM;
(2)在線段AD上(含A、D端點)確定一點P,使得GP∥平面FMC,并給出證明.

查看答案和解析>>

同步練習冊答案